
General Description
The MAX3109 advanced dual universal asynchronous
receiver-transmitter (UART) has 128 words of receive and
transmit first-in/first-out (FIFO) and a high-speed SPI or
I2C controller interface. The 2x and 4x rate modes allow
a maximum of 24Mbps data rates. A phase-locked loop
(PLL) and the fractional baud-rate generators allow a high
degree of flexibility in baud-rate programming and refer-
ence clock selection.
Independent logic-level translation on the transceiver and
controller interfaces allows ease of interfacing to micro-
controllers, FPGAs, and transceivers that are powered
by differing supply voltages. Automatic hardware and
software flow control with selectable FIFO interrupt trig-
gering offloads low-level activity from the host controller.
Automatic half-duplex transceiver control with program-
mable setup and hold times allow the MAX3109 to be
used in high-speed applications such as PROFIBUSDP.
The 128-word FIFOs have advanced FIFO control, reduc-
ing host processor data flow management.
The MAX3109 is available in a 32-pin TQFN (5mm x
5mm) package and is specified over the -40°C to +85°C
extended temperature range.
Applications

 ● Handheld Devices
 ● Power Meters
 ● Programmable Logic

 Controllers (PLCs)

 ● Medical Systems
 ● Point-of-Sales Systems
 ● HVAC or Building Control

Benefits and Features
 ● Bridges an SPI/MICROWIRE or I2C Microprocessor

Bus to an Asynchronous Interface Such as RS-485,
RS-232, or IrDASM

• SIR- and MIR-Compliant IrDA Encoder/Decoder
• Line Noise Indication Ensures Data Link Integrity

 ● Deep, 128-Word Buffer and Automated Control
Features Help Offload Activity on the Microcontroller
• Automatic RTS_ and CTS_ Flow Control
• Automatic XON/XOFF Software Flow Control
• 9-Bit Multidrop-Mode Data Filtering

 - Special Character Detection
 - GPIO-Based Character Detection
 - Two Timers Routed to GPIOs
 - 8 Flexible GPIOs with 20mA Drive Capability

 ● Saves Board Space
• TQFN (5mm x 5mm) Package
• Dual UART in a Single Package

 ● Fast Data Rates Allow Maximum System Flexibility
Across Interface Standards
• 24Mbps (max) Data Rate
• High-Resolution Programmable Baud-Rate
• SPI Up to 26MHz Clock Rate
• Fast Mode Plus I2C Up to 1MHz

 ● Integrated Internal Oscillator Eliminates the Need for
an External Oscillator and Reduces the BOM Cost
• Integrated PLL and Divider

 ● Power Management Control Features Minimize
Power Consumption for Portable Applications
• 1.71V to 3.6V Supply Range
• Shutdown and Autosleep Modes

 - 1μA Shutdown Current
 ● Logic-Level Translation on the Controller and

Transceiver Interfaces Ensure System Compatibility
 ● Register Compatible with MAX3107, MAX3108, and

MAX148301

IrDA is a service mark of Infrared Data Association Corporation.

19-5806; Rev 5; 8/16

MAX3109 Dual Serial UART with 128-Word FIFOs

Functional Diagram

MAX3109

LOGIC-LEVEL
TRANSLATION

SPI
AND
I2C

INTERFACE

LDO

PLL

LOGIC-LEVEL
TRANSLATION

REGISTERS
AND

CONTROL

FRACTIONAL
BAUD-RATE
GENERATOR

UART1

CRYSTAL
OSCILLATOR

V18VCC

DGNDAGND

VEXTVL

LDOEN

SPI/I2C
MOSI/A1

MISO/SDA
CS/A0

SCLK/SCL

RST
IRQ

XIN
XOUT

GPIO4
GPIO5
GPIO6
GPIO7

TX1
RX1
CTS1
RTS1

DIVIDER

UART0 GPIO0
GPIO1
GPIO2
GPIO3

TX0
RX0
CTS0
RTS0

2

TRANSMITTER
SYNC

2

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 2

TABLE OF CONTENTS
Absolute Maximum Ratings . 7
Package Thermal Characteristics . 7
DC Electrical Characteristics . 7
AC Electrical Characteristics . 10
Timing Diagrams . 12
Typical Operating Characteristics . 13
Pin Configuration . 14
Pin Description . 14
Detailed Description. 16

Receive and Transmit FIFOs . 16
Transmitter Operation . 17
Receiver Operation . 17
Line Noise Indication. 18
Clock Selection . 19

Crystal Oscillator . 19
External Clock Source . 19

PLL and Predivider . 19
Fractional Baud-Rate Generators. 19
2x and 4x Rate Modes . 20
Low-Frequency Timer . 20
UART Clock to GPIO . 21
Multidrop Mode . 21
Auto Data Filtering in Multidrop Mode . 21
Auto Transceiver Direction Control . 21
Transmitter Triggering and Synchronization . 21

Transmitter Synchronization . 22
Intrachip and Interchip Synchronization . 22
Delayed Triggering. 22
Trigger Accuracy . 22
Synchronization Accuracy . 23
Auto Transmitter Disable . 24

Echo Suppression . 24
Auto Hardware Flow Control. 24
AutoRTS Control . 24

AutoCTS Control . 25
Auto Software (XON/XOFF) Flow Control . 25

Receiver Flow Control . 25
Transmitter Flow Control . 26

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 3

FIFO Interrupt Triggering . 26
Low-Power Standby Modes . 26

Forced-Sleep Mode . 26
Auto-Sleep Mode . 26
Shutdown Mode . 27

Power-Up and IRQ . 27
Interrupt Structure . 27

Interrupt Enabling. 27
Interrupt Clearing . 27

Register Map . 28
Detailed Register Descriptions. 29
Serial Controller Interface . 57

SPI Interface . 57
SPI Single-Cycle Access . 57
SPI Burst Access . 58
Fast Read Cycle. 58

I2C Interface . 58
START, STOP, and Repeated START Conditions. 58
Slave Address . 59
Bit Transfer. 59
Single-Byte Write . 60
Burst Write . 60
Single-Byte Read. 61
Burst Read . 61
Acknowledge Bits. 62

Applications Information. 62
Startup and Initialization . 62
Low-Power Operation . 63
Interrupts and Polling . 63
Logic-Level Translation . 63
Power-Supply Sequencing . 64
Connector Sharing . 64
RS-232 5x3 Application . 64

Typical Application Circuit . 65
Chip Information. 65
Package Information . 65
Revision History . 66

TABLE OF CONTENTS (continued)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 4

LIST OF FIGURES
Figure 1. I2C Timing Diagram . 12
Figure 2. SPI Timing Diagram . 12
Figure 3. Transmit FIFO Signals . 17
Figure 4. Receive Data Format . 17
Figure 5. Receive FIFO . 18
Figure 6. Midbit Sampling . 18
Figure 7. Clock Selection Diagram. 19
Figure 8. 2x and 4x Baud Rates . 20
Figure 9. GPIO_ Clock Pulse Generator . 20
Figure 10. Auto Transceiver Direction Control . 22
Figure 11. Setup and Hold Times in Auto Transceiver Direction Control . 22
Figure 12. Single Transmitter Trigger Accuracy. 23
Figure 13. Multiple Transmitter Synchronization Accuracy . 23
Figure 14. Half-Duplex with Echo Suppression . 24
Figure 15. Echo Suppression Timing. 25
Figure 16. Simplified Interrupt Structure . 27
Figure 17. PLL Signal Path. 49
Figure 18. SPI Write Cycle. 57
Figure 19. SPI Ready Cycle. 57
Figure 20. SPI Fast Read Cycle. 58
Figure 21. I2C START, STOP, and Repeated START Conditions . 59
Figure 22. Write Byte Sequence . 60
Figure 23. Burst Write Sequence. 60
Figure 24. Read Byte Sequence . 61
Figure 25. Burst Read Sequence. 61
Figure 26. Acknowledge. 62
Figure 27. Startup and Initialization Flowchart. 62
Figure 28. Logic-Level Translation. 63
Figure 29. Connector Sharing with a USB Transceiver . 64
Figure 30. RS-232 Application. 64
Figure 31. RS-485 Half-Duplex Application. 65

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 5

LIST OF TABLES

Receive Hold Register (RHR) . 29
Transmit Hold Register (THR) . 29
IRQ Enable Register (IRQEn) . 30
Interrupt Status Register (ISR). 31
Line Status Interrupt Enable Register (LSRIntEn) . 32
Line Status Register (LSR) . 33
Special Character Interrupt Enable Register (SpclChrIntEn). 34
Special Character Interrupt Register (SpclCharInt) . 35
STS Interrupt Enable Register (STSIntEn). 36
Status Interrupt Register (STSInt) . 37
MODE1 Register . 38
MODE2 Register . 39
Line Control Register (LCR). 40
Receiver Timeout Register (RxTimeOut) .41
HDplxDelay Register .41
IrDA Register . 42
Flow Level Register (FlowLvl) . 42
FIFO Interrupt Trigger Level Register (FIFOTrgLvl) . 43
Transmit FIFO Level Register (TxFIFOLvl). 43
Receive FIFO Level Register (RxFIFOLvl). 43
Flow Control Register (FlowCtrl) . 44
XON1 Register . 45
XON2 Register . 46
XOFF1 Register . 46
XOFF2 Register . 47
GPIO Configuration Register (GPIOConfg) . 47

LIST OF REGISTERS

Table 1. StopBits Truth Table . 40
Table 2. Lengthx Truth Table . 40
Table 3. SwFlow[3:0] Truth Table. 45
Table 4. PLLFactorx Selection Guide . 49
Table 5. GloblComnd Command Descriptions. 53
Table 6. Extended Mode Addressing
(SPI Only) . 53
Table 7. SPI Command Byte Configuration . 57
Table 8. I2C Address Map . 59

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 6

LIST OF REGISTERS (continued)
GPIO Data Register (GPIOData) . 48
PLL Configuration Register (PLLConfig) . 49
Baud-Rate Generator Configuration Register (BRGConfig) . 50
Baud-Rate Generator LSB Divisor Register (DIVLSB) . 50
Baud-Rate Generator MSB Divisor Register (DIVMSB) . 51
Clock Source Register (CLKSource) . 51
Global IRQ Register (GlobalIRQ). 52
Global Command Register (GloblComnd) . 53
Transmitter Synchronization Register (TxSynch). 54
Synchronization Delay Register 1 (SynchDelay1) . 55
Synchronization Delay Register 2 (SynchDelay2) . 55
Timer Register 1 (TIMER1) . 56
Timer Register 2 (TIMER2) . 56
Revision Identification Register (RevID) . 56

(Voltages referenced to AGND.)
VL, VCC, VEXT, XIN..-0.3V to +4.0V
XOUT .. -0.3V to (VCC + 0.3V)
V18-0.3V to the lesser of (VCC + 0.3V) and 2.0V
RST, IRQ, MOSI/A1, CS/A0, SCLK/SCL,

MISO/SDA, LDOEN, SPI/I2C -0.3V to (VL + 0.3V)
TX_, RX_, CTS_, GPIO_-0.3V to (VEXT + 0.3V)
DGND ...-0.3V to +0.3V

Continuous Power Dissipation (TA = +70ºC)
TQFN (derate 34.5mW/ºC above +70ºC)2758.6mW

Operating Temperature Range-40ºC to +85ºC
Maximum Junction Temperature +150ºC
Storage Temperature Range-65ºC to +150ºC
Lead Temperature (soldering, 10s) +300ºC
Soldering Temperature (reflow) +260ºC

TQFN
Junction-to-Ambient Thermal Resistance (θJA)47ºC/W
Junction-to-Case Thermal Resistance (θJC)1.7ºC/W

(Note 1)

(VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, VEXT = 1.71V to 3.6V, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at
VCC = 2.8V, VL = 1.8V, VEXT = 2.5V, TA = +25ºC.) (Notes 2, 3)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 7

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Absolute Maximum Ratings

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.

Package Thermal Characteristics

DC Electrical Characteristics

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Digital Interface Supply Voltage VL 1.71 3.6 V

Analog Supply Voltage VCC
Internal PLL disabled and bypassed 1.71 3.6

V
Internal PLL enabled 2.35 3.6

UART Interface Logic Supply
Voltage VEXT 1.71 3.6 V

Logic Supply Voltage V18 1.65 1.95 V
CURRENT CONSUMPTION

VCC Supply Current ICC

1.8MHz crystal oscillator active, PLL
disabled, SPI/I2C interface idle, UART
interfaces idle, LDOEN = high

500

µA
Baud rate = 1Mbps, 20MHz external clock,
SPI/I2C interface idle, PLL disabled, all
UARTs in loopback mode, LDOEN = low

500

V18 Input Power-Supply Current
in Shutdown Mode I18SHDN RST = low, all inputs and outputs are idle 100 µA

VCC + VL + VA Shutdown Supply
Current ISHDN

RST = low, MISO, SCLK, MOSI, SPI_I2C,
CS, LDOEN = 0/VL, CTSB0/1 = 0/VEXT,
CTSB0/1 = 0/VEXT

0 1 µA

http://www.maximintegrated.com/thermal-tutorial

(VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, VEXT = 1.71V to 3.6V, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at
VCC = 2.8V, VL = 1.8V, VEXT = 2.5V, TA = +25ºC.) (Notes 2, 3)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 8

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

V18 Input Power-Supply Current I18

Baud rate = 1Mbps, 20MHz external clock,
PLL disabled, UART in loopback mode,
LDOEN = low (Note 4)

4 mA

SCLK/SCL, MISO/SDA

MISO/SDA Output Logic-Low
Voltage in I2C Mode VOLI2C

Sink current = 3mA, VL > 2V 0.4
V

Sink current = 3mA, VL < 2V 0.2 x
VL

MISO/SDA Output Low Voltage in
SPI Mode VOLSPI Sink current = 2mA 0.4 V

MISO/SDA Output High Voltage
in SPI Mode VOHSPI Source current = 2mA VL -

0.4 V

Input Logic-Low Voltage VIL SPI and I2C mode 0.3 x
VL

V

Input Logic-High Voltage VIH SPI and I2C mode 0.7 x
VL

V

Input Hysteresis VHYST SPI and I2C mode 0.05 x
VL

V

Input Leakage Current IIL VIN = 0 to VL, SPI and I2C mode -1 +1 µA
Input Capacitance CIN SPI and I2C mode 5 pF
SPI/I2C, CS/A0, MOSI/A1 INPUTS

Input Logic-Low Voltage VIL SPI and I2C mode 0.3 x
VL

V

Input Logic-High Voltage VIH SPI and I2C mode 0.7 x
VL

V

Input Hysteresis VHYST SPI and I2C mode 50 mV
Input Leakage Current IIL VIN = 0 to VL, SPI and I2C mode -1 +1 µA
Input Capacitance CIN SPI and I2C mode 5 pF
IRQ OUTPUT (OPEN DRAIN)
Output Logic-Low Voltage VOL Sink current = 2mA 0.4 V
Output Leakage Current IOL VIRQ = 0 to VL, IRQ is not asserted -1 +1 µA
LDOEN AND RST INPUTS

Input Logic-Low Voltage VIL
0.3 x
VL

V

Input Logic-High Voltage VIH
0.7 x
VL

V

Input Hysteresis VHYST 50 mV
Input Leakage Current IIL VIN = 0 to VL -1 +1 µA

DC Electrical Characteristics (continued)

(VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, VEXT = 1.71V to 3.6V, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at
VCC = 2.8V, VL = 1.8V, VEXT = 2.5V, TA = +25ºC.) (Notes 2, 3)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 9

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
UART INTERFACE
RTS_, TX_ OUTPUTS
Output Logic-Low Voltage VOL Sink current = 2mA 0.4 V

Output Logic-High Voltage VOH Source current = 2mA 0.7 x
VEXT

V

Input Leakage Current IIL Output is three-stated, VRTS = 0 to VEXT -1 +1 µA
Input Capacitance CIN High-Z mode 5 pF
CTS_, RX_ INPUTS

Input Logic-Low Voltage VIL
0.3 x
VEXT

V

Input Logic-High Voltage VIH
0.7 x
VEXT

V

Input Hysteresis VHYST 50 mV
CTS_ Input Leakage Current IIL VCTS_ = 0 to VEXT -1 +1 µA
RX_ Pullup Current IPU VRX_ = 0V, VEXT = 3.6V -7.5 -5.5 -3.5 µA
Input Capacitance CIN 5 pF
GPIO_ INPUTS/OUTPUTS

Output Logic-Low Voltage VOL

Sink current = 20mA, push-pull or open-
drain output type, VEXT > 2.3V 0.45

V
Sink current = 20mA, push-pull or open-
drain output type, VEXT < 2.3V 0.55

Output Logic-High Voltage VOH Source current = 5mA, push-pull output type VEXT -
0.4 V

Input Logic-Low Voltage VIL GPIO_ is configured as an input 0.4 V

Input Logic-High Voltage VIH GPIO_ is configured as an input 2/3 x
VEXT

V

Pulldown Current IPD
VGPIO_ = VEXT = 3.6V, GPIO_ is configured
as an input 3.5 5.5 7.5 µA

XIN
Input Logic-Low Voltage VIL 0.6 V
Input Logic-High Voltage VIH 1.2 V
Input Capacitance CXIN 16 pF
XOUT
Input Capacitance CXOUT 16 pF

DC Electrical Characteristics (continued)

(VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, VEXT = 1.71V to 3.6V TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at
VCC = 2.8V, VL = 1.8V, VEXT = 2.5V, TA = +25ºC.) (Notes 2, 3)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 10

AC Electrical Characteristics

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
External Crystal Frequency fXOSC 1 4 MHz
External Clock Frequency fCLK 0.5 35 MHz
External Clock Duty Cycle (Note 5) 45 55 %
Baud-Rate Generator Clock Input
Frequency fREF (Note 5) 96 MHz

I2C BUS: TIMING CHARACTERISTICS (Figure 1)

SCL Clock Frequency fSCL

Standard mode 100
kHzFast mode 400

Fast mode plus 1000

Bus Free Time Between a STOP
and START Condition tBUF

Standard mode 4.7
µsFast mode 1.3

Fast mode plus 0.5

Hold Time for START Condition
and Repeated START Condition tHD:STA

Standard mode 4.0
µsFast mode 0.6

Fast mode plus 0.26

Low Period of the SCL Clock tLOW

Standard mode 4.7
µsFast mode 1.3

Fast mode plus 0.5

High Period of the SCL Clock tHIGH

Standard mode 4.0
µsFast mode 0.6

Fast mode plus 0.26

Data Hold Time tHD:DAT

Standard mode 0 0.9
µsFast mode 0 0.9

Fast mode plus 0

Data Setup Time tSU:DAT

Standard mode 250
nsFast mode 100

Fast mode plus 50

Setup Time for Repeated START
Condition tSU:STA

Standard mode 4.7
µsFast mode 0.2

Fast mode plus 0.26

Rise Time of Incoming SDA and
SCL Signals tR

Standard mode (0.3 x VL to 0.7 x VL)
(Note 6)

20 +
0.1CB

1000

ns
Fast mode (0.3 x VL to 0.7 x VL) (Note 6) 20 +

0.1CB
300

Fast mode plus 120

Fall Time of SDA and SCL
Signals tF

Standard mode (0.3 x VL to 0.7 x VL)
(Note 6)

20 +
0.1CB

1000

ns
Fast mode (0.3 x VL to 0.7 x VL) (Note 6) 20 +

0.1CB
300

Fast mode plus 120

Note 2: All units are production tested at TA = +25ºC. Specifications over temperature are guaranteed by design.
Note 3: Currents entering the IC are negative and currents exiting the IC are positive.
Note 4: When V18 is powered by an external voltage supply, it must have current capability above or equal to I18.
Note 5: Guaranteed by design; not production tested.
Note 6: CB is the total capacitance of either the clock or data line of the synchronous bus in pF.

(VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, VEXT = 1.71V to 3.6V TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at
VCC = 2.8V, VL = 1.8V, VEXT = 2.5V, TA = +25ºC.) (Notes 2, 3)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 11

AC Electrical Characteristics (continued)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

Setup Time for STOP Condition tSU:STO

Standard mode 4.7
µsFast mode 0.6

Fast mode plus 0.26

Capacitive Load for SDA and SCL CB

Standard mode (Note 5) 400
pFFast mode (Note 5) 400

Fast mode plus (Note 5) 550
SCL and SDA I/O Capacitance CI/O (Note 5) 10 pF
Pulse Width of Spike Suppressed tSP 50 ns
SPI BUS: TIMING CHARACTERISTICS (Figure 2)
SCLK Clock Period tCH+tCL 38.4 ns
SCLK Pulse Width High tCH 16 ns
SCLK Pulse Width Low tCL 16 ns
CS Fall to SCLK Rise Time tCSS 0 ns
MOSI Hold Time tDH 3 ns
MOSI Setup Time tDS 5 ns
Output Data Propagation Delay tDO 20 ns
MISO Rise and Fall Times tFT 10 ns
CS Hold Time tCSH 30 ns

Figure 1. I2C Timing Diagram

Figure 2. SPI Timing Diagram

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 12

Timing Diagrams

SDA

START CONDITION
(S)

START CONDITION
(S)

REPEATED START CONDITION
(Sr)

STOP CONDITION
(P)

SCL

tHD:STA

tSU:DAT tSU:STA

tHD:DAT tHD:STA tSU:STO

tR tF

tBUF

tHIGH tLOWtR tF

CS

SCLK

MOSI

MISO

tCSH
tCSS

tCL

tDS

tFT

tDH

tCH

tDO

tCSH

(VCC = 2.5V, VL = 2.5V, VEXT = 2.5V, VLDOEN = VL, UART1 in sleep mode, TA = +25°C unless otherwise noted.)

MAX3109 Dual Serial UART with 128-Word FIFOs

Maxim Integrated │ 13www.maximintegrated.com

Typical Operating Characteristics

SOURCE CURRENT (PUSH-PULL)
vs. GPIO_OUTPUT HIGH VOLTAGE

M
AX

31
09

 to
c0

2

VOH (V)
I SO

UR
CE

 (m
A)

321

10

20

30

40

50

60

70

0
0 4

VEXT = 3.3V
VEXT = 2.5V

VEXT = 1.8V

TRANSMITTER SYNCHRONIZATION
MAX3109 toc03

10µs/div

VSCL
2V/div

VTX0
2V/div
115.2kBaud

VTX1
2V/div
460.8kBaud

0V

0V

0V
I2C MODE

SINK CURRENT (OPEN DRAIN)
vs. GPIO_ OUTPUT LOW VOLTAGE

M
AX

31
09

 to
c0

1

VOL (V)

I SI
NK

 (m
A)

321

20

40

60

80

100

120

140

160

180

0
0 4

VEXT = 3.6V

VEXT = 2.5V

VEXT = 1.71V

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 14

Pin Description

Pin Configuration

TQFN
(5mm × 5mm)

TOP VIEW

29

30

28

27

12

11

13

MI
SO

/S
DA

GP
IO

7

CS
/A

0

MO
SI

/A
1

IR
Q

14

RS
T

GP
IO

2

RT
S0

RX
1

GP
IO

3

RX
0

TX
0

1 2

GPIO6

4 5 6 7

2324 22 20 19 18

AGND

LDOEN

GPIO5

GPIO1

GPIO4

GPIO0

SC
LK

/S
CL

RT
S1

3

21

31 10V18 DGND

32 9VCC

+
SPI/I2C

XOUT

26 15 CTS0XIN

25 16 CTS1

V L
TX

1

8

17

VEXT

*EP

*CONNECT EP TO AGND.

MAX3109

PIN NAME FUNCTION

1 RST
Active-Low Reset Input. Drive RST low to force all of the UARTs into hardware reset mode. Driving RST
low also enables low-power shutdown mode. When RST is low, the internal V18 LDO is switched off, even
if the LDOEN input is kept high.

2 MISO/SDA
Serial-Data Output. When SPI/I2C is high, MISO/SDA functions as the SPI master input-slave output
(MISO). When SPI/I2C is low, MISO/SDA functions as the SDA, I2C serial-data input/output. MISO/SDA is
high impedance when RST is driven low or when the externally supplied V18 is powered off.

3 SCLK/SCL
Serial-Clock Input. When SPI/I2C is high, SCLK/SCL functions as the SCLK SPI serial-clock input (up to
26MHz). When SPI/I2C is low, SCLK/SCL functions as the SCL, I2C serial-clock input (up to 1MHz in fast
mode plus).

4 GPIO7
General-Purpose Input/Output 7. GPIO7 is user-programmable as an input or output (push-pull or open
drain) or an external event-driven interrupt source. GPIO7 has a weak pulldown resistor to DGND when
configured as an input.

5 CS/A0
Active-Low Chip-Select and Address 0 Input. When SPI/I2C is high, CS/A0 functions as the CS, SPI active-
low chip-select. When SPI/I2C is low, CS/A0 functions as the A0 I2C device address programming input.
Connect CS/A0 to DGND, VL, SCL, or SDA when SPI/I2C is low.

6 MOSI/A1
Serial-Data Input and Address 1 Input. When SPI/I2C is high, MOSI/A1 functions as the SPI master output-
slave input (MOSI). When SPI/I2C is low, MOSI/A1 functions as the A1 I2C device address programming
input. Connect MOSI/A1 to DGND, VL, SCL, or SDA when SPI/I2C is low.

7 IRQ Active-Low Interrupt Open-Drain Output. IRQ is asserted when an interrupt is pending. IRQ is high
impedance when RST is driven low.

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 15

Pin Description (continued)
PIN NAME FUNCTION

8 VL
Digital Interface Power Supply. VL powers the internal logic-level translators for RST, IRQ, MOSI/A1, CS/A0,
SCLK/SCL, MISO/SDA, LDOEN, and SPI/I2C. Bypass VL with a 0.1µF ceramic capacitor to DGND.

9 SPI/I2C SPI Selector Input or Active-Low I2C. Drive SPI/I2C low to enable I2C. Drive SPI/I2C high to enable SPI.
10 DGND Digital Ground

11 GPIO0

General-Purpose Input/Output 0. GPIO0 is user-programmable as an input or output (push-pull or open
drain) or an external event-driven interrupt source. GPIO0 has a weak pulldown resistor to DGND when
configured as an input. GPIO0 is the reference clock output when bit 7 of the TxSynch register is set to
high (see the UART Clock to GPIO section for more information).

12 GPIO4

General-Purpose Input/Output 4. GPIO4 is user-programmable as an input or output (push-pull or open
drain) or an external event-driven interrupt source. GPIO4 has a weak pulldown resistor to DGND when
configured as an input. GPIO4 is the reference clock output when bit 7 of the TxSynch register is set to
high (see the UART Clock to GPIO section for more information).

13 GPIO1
General-Purpose Input/Output 1. GPIO1 is user-programmable as an input or output (push-pull or open
drain) or an external event-driven interrupt source. GPIO1 has a weak pulldown resistor to DGND when
configured as an input. GPIO1 is the TIMER output when bit 7 of the TIMER2 register is set high.

14 GPIO5
General-Purpose Input/Output 5. GPIO5 is user-programmable as an input or output (push-pull or open
drain) or an external event-driven interrupt source. GPIO5 has a weak pulldown resistor to DGND when
configured as an input. GPIO5 is the TIMER output when bit 7 of the TIMER2 register is set high.

15 CTS0 Active-Low Clear-to-Send Input for UART0. CTS0 is a flow-control status input.
16 CTS1 Active-Low Clear-to-Send Input for UART1. CTS1 is a flow-control status input.

17 TX1 Serial Transmitting Data Output for UART1. TX1 is logic-high when RST is low or when the externally
supplied V18 is not powered.

18 TX0 Serial Transmitting Data Output for UART0. TX0 is logic-high when RST is low or when the externally
supplied V18 is not powered.

19 RX0 Serial Receiving Data Input for UART0. RX0 has an internal weak pullup resistor to VEXT.
20 RX1 Serial Receiving Data Input for UART1. RX1 has an internal weak pullup resistor to VEXT.

21 RTS0
Active-Low Request-to-Send Output for UART0. RTS0 can be set high or low by programming the LCR
register. RTS0 is the UART system clock/fractional divider output when bit 7 of the CLKSource register is
set high. RTS0 is logic-high when RST is low or when the externally supplied V18 is not powered.

22 RTS1
Active-Low Request-to-Send Output for UART1. RTS1 can be set high or low by programming the LCR
register. RTS1 is the UART system clock/fractional divider output when bit 7 of the CLKSource register is
set high. RTS1 is logic-high when RST is low or when the externally supplied V18 is not powered.

23 GPIO2
General-Purpose Input/Output 2. GPIO2 is user-programmable as input or output (push-pull or open
drain) or an external event-driven interrupt source. GPIO2 has a weak pulldown resistor to DGND when
configured as an input.

24 GPIO3
General-Purpose Input/Output 3. GPIO3 is user-programmable as input or output (push-pull or open
drain) or an external event-driven interrupt source. GPIO3 has a weak pulldown resistor to DGND when
configured as an input.

25 VEXT
Transceiver Interface Power Supply. VEXT powers the internal logic-level translators for RX_, TX_, RTS_,
CTS_, and GPIO_. Bypass VEXT with a 0.1µF ceramic capacitor to DGND.

26 XIN Crystal/Clock Input. When using an external crystal, connect one end of the crystal to XIN and the other
end to XOUT. When using an external clock source, drive XIN with the single-ended external clock.

Detailed Description
The MAX3109 dual universal asynchronous receiver-
transmitter (UART) bridges an SPI/MICROWIRE® or
I2C microprocessor bus to an asynchronous serial-data
communication link, such as RS-485, RS-232, or IrDA.
The MAX3109 is configured through 8-bit registers, which
are accessed through the SPI or I2C interface. These
registers are organized by related function as shown in
the Register Map section.
The host controller loads data into the Transmit Hold reg-
ister (THR) through the SPI or I2C interface. This data is
automatically pushed into the transmit FIFOs, formatted,
and sent out at TX_. The MAX3109 adds START, STOP,
and parity bits to the data before transmitting the data
out at the selected baud rate. The clock configuration
registers determine the baud rates, clock source selec-
tion, clock frequency prescaling, and fractional baud-rate
generator settings for each UART.
The MAX3109 receivers detect a START bit as a high-
to-low transition on RX_. An internal clock samples this
data at 16 times the baud rate. The received data is
automatically placed in the receive FIFOs and can then
be read out by the host controller through the Receiver
Hold register (RHR).
The device features two identical UARTs that are com-
pletely independent except for the input clock. Text in this
data sheet references individual UART operation, unless
otherwise noted.
The MAX3109’s register set is compatible with the
MAX3107. Refer to Application Note 4938: Differences

Between Maxim’s Advanced UART Devices for informa-
tion on how to transfer firmware from the MAX3107 to the
MAX3109.

Receive and Transmit FIFOs
Each UART’s receiver and transmitter has a 128-word-
deep FIFOs, reducing the number of intervals that the
host processor needs to dedicate for high-speed, high-
volume data transfer to and from the device. As the data
rates of the asynchronous RX_/TX_ interfaces increase
and get closer to those of the host controller’s SPI/I2C
data rates, UART management and flow-control can
make up a significant portion of the host’s activity. By
increasing FIFO size, the host is interrupted less often
and can use data block transfers to and from the FIFOs.
FIFO trigger levels can generate interrupts to the host
controller, signaling that programmed FIFO fill levels have
been reached. The transmitter and receiver trigger levels
are programmed through the FIFOTrgLvl register with a
resolution of eight FIFO locations. The receive FIFO trig-
ger signals to the host either that the receive FIFO has a
defined number of words waiting to be read out in a block
or that a known number of vacant FIFO locations are
available and ready to be filled. The transmit FIFO trigger
generates an interrupt when the transmit FIFO fill level is
above the programmed trigger level. The host then knows
to throttle data writing to the transmit FIFO through THR.
The host can read out the number of words present in
each of the FIFOs through the TxFIFOLvl and RxFIFOLvl
registers. Note: The TxFIFOLvl and RxFIFOLvl values
can be in error. See the TxFIFOLvl register description
for details.

MICROWIRE is a registered trademark of National
Semiconductor Corp.

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 16

Pin Description (continued)
PIN NAME FUNCTION

27 XOUT Crystal Output. When using an external crystal, connect one end of the crystal to XOUT and the other end
to XIN. When using an external clock source, leave XOUT unconnected.

28 GPIO6
General-Purpose Input/Output 6. GPIO6 is user-programmable as input or output (push-pull or open
drain) or an external event-driven interrupt source. GPIO6 has a weak pulldown resistor to DGND when
configured as an input.

29 AGND Analog Ground

30 LDOEN LDO Enable Input. Drive LDOEN high to enable the internal 1.8V LDO. Drive LDOEN low to disable the
internal LDO. Supply V18 with an external voltage source when LDOEN is low.

31 V18
Internal 1.8V LDO Output and 1.8V Power-Supply Input. Bypass V18 with a 1µF ceramic capacitor to
DGND.

32 VCC
Analog Power Supply. VCC powers the PLL and internal LDO. Bypass VCC with a 0.1µF ceramic
capacitor to AGND.

— EP Exposed Pad. Connect EP to AGND. Do not use EP as the main AGND connection.

The contents of the TxFIFO and RxFIFO are both cleared
when the MODE2[1]: FIFORst bit is set high.

Transmitter Operation
Figure 3 shows the structure of the transmitter with the
TxFIFO. The transmit FIFO can hold up to 128 words of
data that are added by writing to the THR register.
The transmit FIFO fill level can be programmed to gen-
erate an interrupt when greater than or equal to a pro-
grammed number of words are present in the TxFIFO
through the FIFOTrgLvl register. This TxFIFO interrupt
trigger level is selectable by the FIFOTrgLvl[3:0] bits.
When the transmit FIFO fill level increases to at least the

programmed trigger level, an interrupt is generated in
ISR[4]: TxTrigInt.
An interrupt is generated in ISR[5]: TFifoEmptyInt when
the transmit FIFO is empty. ISR[5] goes high when
the transmitter starts transmitting the last word in the
TxFIFO. An additional interrupt is generated in STSInt[7]:
TxEmptyInt when the transmitter completes transmitting
the last word.
To halt transmission, set the MODE1[1]: TxDisabl bit
high. After TxDisabl is set, the transmitter completes the
transmission of the current character and then ceases
transmission. Turn the transmitter off prior to enabling
auto software flow control and AutoRTS flow control.
The TX_ output logic can be inverted through the IrDA[5]:
TxInv bit. Unless otherwise noted, all transmitter logic
described in this data sheet assumes that TxInv is set low.
Note: Errors in transmitted data can occur when the THR
is being written to while the transmitter is sending data.
See the THR register description for details.

Receiver Operation
The receiver expects the format of the data at RX_ to be
as shown in Figure 4. The quiescent logic state is logic-
high and the first bit (the START bit) is logic-low (RxInv =
0). The 8-bit data word expected to be received LSB first.
The receiver samples the data near the midbit instant
(Figure 4). The received words and their associated errors
are deposited into the receive FIFO. Errors and status
information are stored for every received word (Figure 5).
The host reads the data out of the receive FIFO by read-
ing RHR, which comes out oldest data first. After a word
is read out of RHR, LSR contains the status information
for that word. Note: Errors in transmitted data can occur
when the THR is being written to while the transmitter is
sending data. See the THR register description for details.

Figure 4. Receive Data Format

Figure 3. Transmit FIFO Signals

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 17

RECEIVED DATA

NOTE: RxInv = 0.

LSB

START D0 D1 D2 D3 D4 D5 D6 D7 PARITY STOP STOP

MSB

MIDDATA
SAMPLING

CURRENT FILL LEVEL

TRANSMITTER TX_

TRANSMIT FIFO

FIFOTrgLvl[3:0]
TRIGGER

ISR[4]

THR

DATA FROM SPI/I2C INTERFACE

128

3
2
1

LEVEL
TxFIFOLvl

EMPTY
ISR[5]

The following three error conditions are checked for each
received word: parity error, frame error, and noise on the
line. Parity errors are detected by calculating either even
or odd parity of the received word as programmed by
register settings. Framing errors are detected when the
received data frame does not match the expected frame
format in length. Line noise is detected by checking the
logical congruency of the three samples taken of each bit
(Figure 6).
The receiver can be turned off by setting the MODE1[0]:
RxDisabl bit high. After this bit is set high, the MAX3109
turns the receiver off immediately following the current
word and does not receive any further data.
The RX_ input logic can be inverted by setting the IrDA[4]:
RxInv bit high. Unless otherwise noted, all receiver logic
described in this data sheet assumes that RxInv is set low.

Line Noise Indication
When operating in standard or 2x (i.e., not 4x) rate mode,
the MAX3109 checks that the binary logic level of the
three samples per received bit are identical. If any of
the three samples per received bit have differing logic
levels, then noise on the transmission line has affected
the received data and it is considered to be noisy. This
noise indication is reflected in the LSR[5]: RxNoise bit for
each received byte. Parity errors are another indication of
noise, but are not as sensitive.

Figure 6. Midbit Sampling

Figure 5. Receive FIFO

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 18

1

RX_

BAUD
BLOCK

2 3 4 5 6 7 8 9

ONE BIT PERIOD

10 11

MAJORITY
CENTER

SAMPLER

12 13 14 15 16

A

RECEIVE FIFO

FIFOTrgLvl[7:4]
TRIGGER

ISR[3]

WORD ERROR 128

RxFIFOLvl

4
3
2
1

TIMEOUT

EMPTY

ERRORS

OVERRUN
LSR[1]

RECEIVED
DATA

RHR

RECEIVER RX_

I2C/SPI INTERFACE

LSR[0]

ISR[6]

LSR[5:2]

CURRENT FILL LEVEL

Clock Selection
The MAX3109 can be clocked by either an external
crystal or an external clock source. Figure 7 shows a
simplified diagram of the clock selection circuitry. When
the MAX3109 is clocked by a crystal, the STSInt[5]:
ClkReady bit indicates when the crystal oscillator has
reached steady state and the baud-rate generator is
ready for stable operation.
Each UART baud rate can be individually programmed
and both share the same reference clock input.
The baud-rate clock can be routed to the RTS_ output by
setting the CLKSource[7]: CLKtoRTS bit high. The clock
rate is 16x the baud rate in standard operating mode, 8x
the baud rate in 2x rate mode, and 4x the baud rate in 4x
rate mode. If the fractional portion of the baud-rate gen-
erator is used, the clock is not regular and exhibits jitter.

Crystal Oscillator
The MAX3109 is equipped with a crystal oscillator to
provide high baud-rate accuracy and low power consump-
tion. Set the CLKSource[1]: CrystalEn bit high to enable
and select the crystal oscillator. The on-chip crystal oscil-
lator has integrated load capacitances of 16pF in both the
XIN and XOUT pins. Connect only an external crystal or
ceramic oscillator between XIN and XOUT.

External Clock Source
Connect an external single-ended clock source to XIN
when not using the crystal oscillator. Leave XOUT uncon-
nected. Set the CLKSource[1]: CrystalEn bit low to select
external clocking.

PLL and Predivider
The internal predivider and PLL allow for compatibil-
ity with a wide range of external clock frequencies and
baud rates. The PLL can be configured to multiply the
input clock rate by a factor of 6, 48, 96, or 144 by the
PLLConfig[7:6] bits. The predivider is located between
the input clock and the PLL and allows division of the

input clock by an integer factor between 1 and 63. This
value is defined by the PLLConfig[5:0] bits. See the
PLLConfig register description for more information. Use
of the PLL requires VCC to be higher than 2.35V.

Fractional Baud-Rate Generators
Each UART has an internal fractional baud-rate generator
that provides a high degree of flexibility and high resolu-
tion in baud-rate programming. The baud-rate genera-
tor has a 16-bit integer divisor and a 4-bit word for the
fractional divisor. The fractional baud-rate generator can
be used either with the crystal oscillator or external clock
source.
The integer and fractional divisors are calculated by the
divisor, D:

REFf RateModeD
16 BaudRate

×
=

×

where fREF is the reference frequency input to the baud-
rate generator, RateMode is the rate mode multiplier (1x
default), BaudRate is the desired baud rate, and D is the
ideal divisor. fREF must be less than 96MHz. RateMode
is 1 in 1x rate mode, 2 in 2x rate mode, and 4 in 4x rate
mode.
The integer divisor portion, DIV, of the divisor, D, is
obtained by truncating D:

DIV = TRUNC(D)
DIV can be a maximum of 16 bits (65,535) wide and
is programmed into the two single-byte-wide registers
DIVMSB and DIVLSB. The minimum allowed value for
DIVLSB is 1.
The fractional portion of the divisor, FRACT, is a 4-bit nib-
ble that is programmed into BRGConfig[3:0]. The maxi-
mum value is 15, allowing the divisor to be programmed
with a resolution of 0.0625. FRACT is calculated as:
FRACT = ROUND(16 x (D - DIV)).

Figure 7. Clock Selection Diagram

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 19

CRYSTAL
OSCILLATOR

XOUT

CrystalEn

XIN

FRACTIONAL
BAUD-RATE

GENERATOR 0

FRACTIONAL
BAUD-RATE

GENERATOR 1

PLLBypass

PLLEn

PLLDIVIDER

The following is an example of how to calculate the divi-
sor. It is based on a required baud rate of 190kbaud and
a reference input frequency of 28.23MHz and 1x (default)
rate mode.
The ideal divisor is calculated as:

D = 28,230,000/(16 x 190,000) = 9.286
hence DIV = 9.

FRACT = ROUND(16 x 0.286) = 5
so DIVMSB = 0x00, DIVLSB = 0x09, and BRGConfig[3:0]
= 0x05.
The resulting actual baud rate can be calculated as:

REF
ACTUAL

ACTUAL

f RateModeBR
16 D

×
=

×

For this example:
DACTUAL = 9 + 5/16 = 9.3125, RateMode = 1, and
BRACTUAL = 28,230,000/(16 x 9.3125) = 189463 baud.
Thus, the actual baud rate is within 0.28% of the ideal rate.

2x and 4x Rate Modes
To support higher baud rates than possible with standard
operation using 16x sampling, the MAX3109 offers 2x
and 4x rate modes. In these modes, the reference clock
rate only needs to be either 8x or 4x higher than the baud
rate, respectively. In 4x rate mode, each received bit is
only sampled once at the midbit instant instead of the

usual three samples to determine the logic value of the
received bit. This reduces the ability to detect line noise
on the received data in 4x rate mode. The 2x and 4x rate
modes are selectable through BRGConfig[5:4]. Note that
IrDA encoding and decoding does not operate in 2x and
4x rate modes.
When 2x rate mode is selected, the actual baud rate is
twice the rate programmed into the baud-rate generator. If
4x rate mode is enabled, the actual baud rate on the line
is quadruple that of the programmed baud rate (Figure 8).

Low-Frequency Timer
Each UART has a general-purpose timer that can be used
to generate a low-frequency clock at a GPIO output and
can, for example, be used to drive external LEDs. The
low-frequency clock is a divided replica of the given UART
baud-rate clock. The timer for each UART is internally
routed to the respective GPIO_ output when enabled by
the TIMER2 register as follows:
● UART0: GPIO1
● UART1: GPIO5
The clock pulses at the GPIOs are generated at a rate
defined by the baud-rate generator and the timer divider
(Figure 9). The baud-rate generator clock frequency is
divided by (1024 x Timer[14:0]) to produce the GPIO_
clock, where Timer[14:0] is the 15-bit value programmed
into the TIMER1 and TIMER2 registers. The timer output
is 50% duty cycle clock.

Figure 8. 2x and 4x Baud Rates

Figure 9. GPIO_ Clock Pulse Generator

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 20

FRACTIONAL
RATE

GENERATOR
fREF BAUD RATE

BRGConfig[5:4]DIVLSB
DIVMSB

NOTE: IrDA DOES NOT WORK IN 2x AND 4x MODES.

FRACT

1x, 2x, 4x RATE
MODES

FRACTIONAL
RATE

GENERATOR
fREF ÷TIMERx

GPIO_ GPIO_

TmrToGPIO

÷1024

DIVLSB
DIVMSB
FRACT

UART Clock to GPIO
The MAX3109 reference clock can be routed to the
GPIO0 and/or GPIO4 outputs if a synchronous high-fre-
quency clock is needed by another device. Enable routing
a UART clock to GPIO0 and/or GPIO4 in the TxSynch
register. This output clock could, for example, be used to
clock another UART device.

Multidrop Mode
In multidrop mode, also known as 9-bit mode, the data
word length is 8 bits and a 9th bit is used for distinguish-
ing between an address word and a data word. Multidrop
mode is enabled by the MODE2[6]: MultiDrop bit. The
MultiDrop bit takes the place of the parity bit in the data
word structure. Parity checking is disabled and an inter-
rupt is generated in SpclCharInt[5]: MultiDropInt when an
address (9th bit is 1) is received while in multidrop mode.
It is up to the host processor to filter out the data intended
for its address. Alternatively, the auto data-filtering fea-
ture can be used to automatically filter out the data not
intended for the station’s specific 9-bit mode address.

Auto Data Filtering in Multidrop Mode
In multidrop mode, the MAX3109 can be configured
to automatically filter out data that is not meant for its
address. The address is user-definable either by pro-
gramming a register value or a combination of a register
value and GPIO hardware inputs. Use either the entire
XOFF2 register or the XOFF2[7:4] bits in combination
with GPIO_ inputs to define the address.
Enable multidrop mode by setting the MODE2[6]:
MultiDrop bit high and enable auto data filtering by set-
ting the MODE2[4]: SpecialChr bit high.
When using register bits in combination with GPIO_ inputs
to define the address, the MSB of the address is written
to the XOFF2[7:4] bits, while the LSBs of the address are
defined by the GPIOs. To enable this address-definition
method along with auto data filtering, set the FlowCtrl[2]:
GPIAddr bit high in addition to the MODE2[4]: SpecialChr
and MODE2[6]: MultiDrop bits. The GPIO_ inputs are
automatically read when the FlowCtrl[2]: GPIAddr bit is
set high, and the address is automatically updated on
logic changes to any GPIO pin.
When using auto data filtering, the MAX3109 checks
each received address against the programmed station
address. When an address is received that matches the
station’s address, received data is stored in the RxFIFO.
When an address is received that does not match the sta-
tion’s address, received data is discarded. Addresses are

not stored into the FIFO but an interrupt is still generated in
SpclCharInt[5]: MultiDropInt upon receiving an address.
An additional interrupt is generated in SpclCharInt[3]:
XOFF2Int when the station address is received.

Auto Transceiver Direction Control
In some half-duplex communication systems, the trans-
ceiver’s transmitter must be turned off when data is
being received in order to not load the bus. This is the
case in half-duplex RS-485 communication. Similarly, in
full-duplex multidrop communication such as RS-485 or
RS-422 V.11, only one transmitter can be enabled at any
one time while the others must be disabled. The MAX3109
can automatically enable/disable a transceiver’s transmit-
ter and/or receiver at the hardware level by controlling its
DE and RE pins. This feature relieves the host processor
of this time-critical task.
The RTS_ output is used to control the transceiv-
ers’ transmit-enable input and is automatically set high
when the MAX3109’s transmitter starts transmission.
This occurs as soon as data is present in the transmit
FIFO. Auto transceiver direction control is enabled by
the MODE1[4]: TrnscvCtrl bit. Figure 10 shows a typical
MAX3109 connection in an RS-485 application using the
auto transceiver direction control feature.
The RTS output can be set high in advance of TX_
transmission by a programmable time period called the
setup time (Figure 11). The setup time is programmed
by the HDplxDelay[7:4]: Setupx bits. Similarly, the RTS_
output can be held high for a programmable period
after the transmitter has completed transmission called
the hold time. The hold time is programmed by the
HDplxDelay[3:0] bits.

Transmitter Triggering and Synchronization
The MAX3109 allows synchronization of transmitters so
that selected UARTs start transmitting data when a trig-
ger command is received. Optional delays can also be
programmed that delay the start of transmission after a
trigger command is received. A UART’s transmitter can be
assigned one of 16 possible SPI/I2C trigger commands.
A trigger command is defined as any of the 16 special
values written into the GloblComnd register (see the
GloblComnd register description for more information).
When a byte is written into the GloblComnd register,
the UART select bit (U) is ignored by the MAX3109 and
the GloblComnd applies to both UARTs. Transmission is
initiated when the MAX3109 receives an assigned SPI/
I2C trigger command, the selected transmitter is initially
disabled, and data has been loaded into its TxFIFO.

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 21

Enable and configure transmitter synchronization with
the TxSynch register. Triggering and synchronization
requires that the transmitters are disabled before the
trigger is received. This can be done by setting the
MODE1[1]: TxDisabl bit high or by using the auto trans-
mitter disable function (TxSynch[4] is logic 1).

Transmitter Synchronization
Synchronize multiple UARTs so that their transmitters start
transmission simultaneously by assigning a common trig-
ger command to the UARTs that should be synchronized.

Intrachip and Interchip Synchronization
Intrachip transmitter triggering occurs when the two UARTs
in a MAX3109 device are triggered by one command. This
type of synchronization is supported in both SPI and I2C
modes, as the trigger commands are global commands
that are received by both UARTs simultaneously.

Interchip transmitter triggering synchronizes UARTs in dif-
ferent MAX3109 devices. This type of synchronization is
achievable in SPI mode only. Pull the CS input of all the
MAX3109 devices on the bus low during the SPI mas-
ter’s write trigger command so that the commands are
received by all UARTs on the shared SPI bus.
I2C protocol does not allow simultaneous addressing of
multiple devices.

Delayed Triggering
A delay can be programmed to postpone the start of
transmission after receiving an assigned trigger com-
mand. Set the delay by programming the SynchDelay1
and SynchDelay2 registers.

Trigger Accuracy
The delay between the time when the MAX3109 receives
a trigger command and the time when the associated
transmitter starts transmission is made up of a fixed,
deterministic portion, and a variable, random component.

Figure 10. Auto Transceiver Direction Control

Figure 11. Setup and Hold Times in Auto Transceiver Direction Control

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 22

MAX3109 MAX14840E

TRANSMITTER
TX_

B

A

D

RTS_

RX_

TxFIFO

RECEIVER

AUTO
TRANSCEIVER

CONTROL

RxFIFO

DI

RO

RE

DE

R

TX_

FIRST CHARACTER LAST CHARACTER

RTS_

SETUP
HOLD

Both portions of the delay are dependent on the UART’s
clock. When the fractional divider is not used, the intrinsic
trigger delay, tTRIG, is bounded by the following limits:

TRIG
5 6t

UARTCLK UARTCLK
≤ ≤

where UARTCLK is the baud-rate divider output. The
reference point is the time when the trigger command is
received by the MAX3109. This occurs on the final (i.e.,
the 16th) SPI clock’s low-to-high transition (Figure 12).

In I2C mode, this occurs on the final (i.e., the 8th) SCL
low-to-high transition.
When the fractional baud-rate generator is used, the ran-
dom portion is larger than one UART clock period.

Synchronization Accuracy
When synchronizing multiple UART transmitters, the out-
put skew of the TX_ transmitter outputs is based on the
triggering delays of each UART (Figure 13). This skew
has a baud rate dependent component, similar to the

Figure 12. Single Transmitter Trigger Accuracy

Figure 13. Multiple Transmitter Synchronization Accuracy

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 23

UNCERTAINTY
INTERVAL

tTRIG_MIN

tTRIG_MAX

TX_

SCLK

tTX1_MAX

tTRIGSKEW

tTX1_MIN

tTX0_MAX

tTX0_MINTX0

TX1

SCLK

trigger accuracy equation for a single transmitter output.
Calculate the TX_ transmitter output skew using the fol-
lowing equation:

TRIGSKEW
S F

6 5t
(UARTCLK) (UARTCLK)

≤ −

where (UARTCLK)S is the fractional divider output clock
of the lower/slower baud rate UART, and (UARTCLK)F is
the fractional divider output clock of the higher/faster baud
rate UART.

Auto Transmitter Disable
The MAX3109 allows automatic disabling of the transmit-
ter. Enable auto transmitter disabling functionality by set-
ting the TxSynch[6]: TxAutoDis bit high. In this mode, the
MAX3109 disables the specified transmitter by setting the
MODE1[1]: TxDisabl bit high after it completes sending all
the data in its TxFIFO. New data can then be loaded into
the TxFIFO. A disabled transmitter does not send out data
on the TX_ output when data is present in its TxFIFO.
To enable transmission after a transmitter has been dis-
abled automatically, either clear the TxAutoDis or toggle
the TxDisabl bit.

Echo Suppression
The MAX3109 can suppress echoed data that is some-
times found in half-duplex communication networks,
such as RS-485 and IrDA. If the transceiver’s receiver is
not turned off while the transceiver is transmitting, cop-
ies (echoes) of the transmitted data are received by the
UART. The MAX3109’s receiver can block the reception
of this echoed data by enabling echo suppression. Figure
14 shows a typical RS-485 application using the echo

suppression feature. Set the MODE2[7]: EchoSuprs bit
high to enable echo suppression.
The MAX3109 can also block echoes with a long round
trip delay by disabling the transceiver’s receiver with the
RTS_ output while the MAX3109 is transmitting. The
transmitter can be configured to remain enabled after
the end of the transmission for a programmable period
of time called the hold time delay (Figure 15). The hold
time delay is set by the HDplxDelay[3:0]: Holdx bits.
See the HDplxDelay description in the Detailed Register
Descriptions section for more information.
Echo suppression can operate simultaneously with auto
transceiver direction control.

Auto Hardware Flow Control
The MAX3109 is capable of auto hardware (RTS_ and
CTS_) flow control without the need for host proces-
sor intervention. When AutoRTS control is enabled, the
MAX3109 automatically controls the RTS_ handshake
without the need for host processor intervention. AutoCTS
flow control separately turns the MAX3109’s transmit-
ter on and off based on the CTS_ input. AutoRTS and
AutoCTS flow control modes are independently enabled
by the FlowCtrl[1:0] bits.

AutoRTS Control
AutoRTS flow control ensures that the receive FIFO does
not overflow by signaling to the far-end UART to stop
data transmission. The MAX3109 does this automatically
by controlling the RTS_ output. AutoRTS flow control is
enabled by setting the FlowCtrl[0]: AutoRTS bit high. The
HALT and RESUME programmable values determine the
threshold RxFIFO fill levels at which RTS_ is asserted
and deasserted. Set the HALT and RESUME levels in

Figure 14. Half-Duplex with Echo Suppression

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 24

MAX3109 MAX14840E

TRANSMITTER
TX_

B

A

D

RX_

TxFIFO

RECEIVER

ECHO
SUPPRESSION

RxFIFO

DI

RO

RE

DE

R

RTS_

the FlowLvl register. With differing HALT and RESUME
levels, hysteresis of the RxFIFO level can be defined for
RTS_ transitions.
When the RxFIFO is filled to a level higher than the HALT
level, the MAX3109 deasserts RTS_ and stops the far-
end UART from transmitting any additional data. RTS_
remains deasserted until the RxFIFO is emptied enough
so that the number of words falls to below the RESUME
level.
Interrupts are not generated when the HALT and
RESUME levels are reached. This allows the host
controller to be completely disengaged from RTS_ flow
control management.

AutoCTS Control
When AutoCTS flow control is enabled, the UART auto-
matically starts transmitting data when the CTS_ input
is logic-low and stops transmitting data when CTS_ is
logic-high. This frees the host processor from managing
this time-critical flow-control task. AutoCTS flow control is
enabled by setting the FlowCtrl[1]: AutoCTS bit high. The
ISR[7]: CTSInt interrupt works normally during AutoCTS
flow control. Set the IRQEn[7]: CTSIntEn bit low to dis-
able routing of CTS_ interrupts to IRQ and ensure that the
host does not receive interrupts from CTS_ transitions. If
CTS_ transitions from low to high during transmission of
a data word, the MAX3109 completes the transmission of
the current word and halts transmission afterwards.
Turn the transmitter off by setting the MODE1[1]: TxDisabl
bit high before enabling AutoCTS control.

Auto Software (XON/XOFF) Flow Control
When auto software flow control is enabled, the MAX3109
recognizes and/or sends predefined XON/XOFF charac-
ters to control the flow of data across the asynchronous
serial link. The XON character signifies that there is
enough room in the receive FIFO and transmission of
data should continue. The XOFF character signifies that
the receive FIFO is nearing overflow and that the trans-
mission of data should stop. Auto software flow control
works autonomously and does not require host interven-
tion, similar to auto hardware flow control. To reduce the
chance of receiving corrupted data that equals a single-
byte XON or XOFF character, the MAX3109 allows for
double-wide (16-bit) XON/XOFF characters. The XON
and XOFF characters are programmed into the XON1,
XON2 and XOFF1, XOFF2 registers.
The FlowCtrl[7:3] bits are used for enabling and configur-
ing auto software flow control. An interrupt is generated in
ISR[1]: SpCharInt whenever an XON or XOFF character
is received and details are stored in the SpclCharInt
register. Set the IRQEn[1]: SpclChrIEn bit low to disable
routing of the interrupt to IRQ.
Software flow control consists of transmit flow control
and receive flow control, which operate independently of
each other.

Receiver Flow Control
When auto receive flow control is enabled by the
FlowCtrl[7:6] bits, the MAX3109 automatically controls
the transmission of data by the far-end UART by send-
ing XOFF and XON control characters. The HALT and

Figure 15. Echo Suppression Timing

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 25

TX_

RX_

DI TO RO PROPAGATION DELAY

HOLD DELAYSTOP
BIT

RTS_

RESUME levels determine the threshold RxFIFO fill
levels at which the XOFF and XON characters are sent.
HALT and RESUME are programmed in the FlowLvl reg-
ister. With differing HALT and RESUME levels, hysteresis
can be defined in the RxFIFO fill level for the receiver flow
control activity.
When the RxFIFO is filled to a level higher than the HALT
level, the MAX3109 sends an XOFF character to stop
data transmission. An XON character is sent when the
RxFIFO is emptied enough so that the number of words
falls to below the RESUME level.
If double-wide (16-bit) XON/XOFF characters are select-
ed by setting the FlowCtrl[7:6] bits to 11, then XON1/
XOFF1 are transmitted before XON2/XOFF2 whenever a
control character is transmitted.

Transmitter Flow Control
If auto transmit control is enabled by the FlowCtrl[5:4]
bits, the receiver compares all received words with the
XOFF and XON characters. When an XOFF character is
received, the MAX3109 halts the transmitter from sending
further data following any currently transmitting word. The
receiver is not affected and continues receiving. Upon
receiving an XON character, the transmitter restarts send-
ing data. The received XON and XOFF characters are
filtered out and are not stored into the receive FIFO. An
interrupt is not generated.
If double-wide (16-bit) XON/XOFF characters are select-
ed by setting the FlowCtrl[5:4] bits to 11, then a character
matching XON1/XOFF1 must be received before a char-
acter matching XON2/XOFF2 in order to be interpreted as
a control character.
Turn the transmitter off by setting the MODE1[1]: TxDisabl
bit high before enabling software transmitter flow control.

FIFO Interrupt Triggering
Receive and transmit FIFO fill-dependent interrupts are
generated if FIFO trigger levels are defined. When the num-
ber of words in the FIFOs reach or exceed a trigger level
programmed in the FIFOTrgLvl register, an interrupt is gen-
erated in ISR[3] or ISR[4]. The interrupt trigger levels oper-
ate independently from the HALT and RESUME flow control
levels in AutoRTS or auto software flow control modes.
The FIFO interrupt triggering can be used, for example,
for a block data transfer. The trigger level interrupt gives
the host an indication that a given block size of data is
available for reading in the receive FIFO or available for
transfer to the transmit FIFO. If the HALT and RESUME
levels are outside of this range, then the UART continues

to transmit or receive data during the block read/write
operations for uninterrupted data transmission on the bus.

Low-Power Standby Modes
The MAX3109 has sleep and shutdown modes that
reduce power consumption during periods of inactivity.
In both sleep and shutdown modes, the UART disables
specific functional blocks to reduce power consumption.
After sleep or shutdown mode is exited, the internal clock
starts up and a period of time is needed for clock stabi-
lization. The STSInt[5]: ClkReady bit indicates when the
clocks are stable. When an external clock source is used,
the ClkReady bit does not indicate clock stability.

Forced-Sleep Mode
In forced-sleep mode, all UART-related on-chip clocking
is stopped. The following blocks are inactive: the crys-
tal oscillator, the PLL, the predivider, the receiver, and
the transmitter. The I2C/SPI interface and the registers
remain active and the host controller can access them.
To force the MAX3109 to enter sleep mode, set the
MODE1[5]: ForcedSleep bit high. To exit forced-sleep
mode, set the ForcedSleep bit low.

Auto-Sleep Mode
The MAX3109 can be configured to operate in auto-sleep
mode by setting the MODE1[6]: AutoSleep bit high. In
auto-sleep mode, the MAX3109 automatically enters
sleep mode when all the following conditions are met:
● Both FIFOs are empty.
● There are no pending IRQ interrupts.
● There is no activity on any input pins for a period equal

to 65,536 UART character lengths.
The same blocks are inactive when the UART is in auto-
sleep mode as in forced-sleep mode.
The MAX3109 exits auto-sleep mode as soon as activity
is detected on any of the GPIO_, RX_, or CTS_ inputs.
To manually exit auto-sleep mode, set the MODE1[6]:
AutoSleep bit low.
Multiple UARTs in Sleep Mode
The MAX3109’s two UARTs enter and exit sleep mode
separately. When only one UART is in sleep mode, the
device stops routing the clock to this UART, reducing
power consumption. All other clocking circuitry remains
active if the other UART is still active. If both UARTs are in
sleep mode, the clocking circuitry is switched off, further
reducing power consumption.

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 26

Shutdown Mode
Drive the RST input to logic-low to enter shutdown mode.
Shutdown mode consumes less than 1µA. In shutdown
mode, all the MAX3109 circuitry is completely off. This
includes the I2C/SPI interface, the registers, the FIFOs,
and the clocking circuitry.
When the RST input transitions from low to high, the
MAX3109 exits shutdown mode and a hardware reset
is initiated. The chip initialization is complete when the
I2C/SPI controller is able to read out known register con-
tents from the MAX3109. This could, for example, be the
DIVLSB register.
The MAX3109 needs to be reprogrammed following a
shutdown.

Power-Up and IRQ
The IRQ output only operates when all supplies are
active. IRQ operates as a hardware active-low interrupt
output; IRQ is asserted when an interrupt is pending. An
IRQ interrupt is only possible during normal operation if at
least one of the interrupt enable bits in the IRQEn register
is set.
In polled mode, any register with a known reset value
can be polled to check whether the MAX3109 is ready for
operation. If the controller gets a valid response from the
polled register, then the MAX3109 is ready for operation.

Interrupt Structure
Figure 16 shows the structure of the interrupt. There are
four interrupt source registers: ISR, LSR, STSInt, and
SpclCharInt. The interrupt sources are divided into top-
level and low-level interrupts. The top-level interrupts
typically occur more often and can be read out by the host
controller directly through ISR. The low-level interrupts
typically occur less often and their specific source can be
read out by the host controller through LSR, STSInt, or
SpclCharInt. The three LSBs of ISR point to the low-level
interrupt registers that contain the details of the interrupt
source.

Interrupt Enabling
Every interrupt bit of the four interrupt registers can
be enabled or masked through an associated interrupt
enable register bit. These are the IRQEn, LSRIntEn,
SpclChrIntEn, and STSIntEn registers. By default, all
interrupts are masked.

Interrupt Clearing
When an interrupt is pending (i.e., IRQ is asserted) and
ISR is read, both the ISR bits are cleared and the IRQ
output is deasserted. Low-level interrupt information
does not reassert IRQ for the same interrupt, but remains
stored in the low-level interrupt registers until each is
separately cleared. SpclCharInt and STSInt are clear-
on-read (COR). The LSR bits are only cleared when the
source of the interrupt is removed, not when LSR is read.

Figure 16. Simplified Interrupt Structure

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 27

0 0 0 0 0 0 IRQ1 IRQ0
GlobalIRQ

8

7 6 5 4 3 2 1 0
ISR

7 6 5 4 3 2 1 0
ISR

8

[1]
IRQ

[0]

LOW-LEVEL INTERRUPTS

TOP-LEVEL INTERRUPTS

7 6 5 4 3 2 1 0
SpclCharInt

8

7 6 5 4 3 2 1 0
STSInt

8

7 6 5 4 3 2 1 0
LSR

8

Register Map
(Note: All default reset values are 0x00, unless otherwise noted. All registers are R/W, unless otherwise noted.)

1 Denotes nonread/write mode: RHR = R, THR = W, ISR = COR, LSR = R, SpclCharInt = COR, STSInt = R/COR, TxFIFOLvl = R,
RxFIFOLvl = R, GlobalIRQ = R, GloblComnd = W, RevID = R.

2 Denotes nonzero default reset value: ISR = 0x60, LCR = 0x05, FIFOTrgLvl = 0xFF, PLLConfig = 0x01, DIVLSB = 0x01,
CLKSource = 0x18, GlobalIRQ = 0x03, RevID = 0xC1.

3 Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7.
4 Denotes a register that can only be programmed by accessing UART0.
5 Denotes a register that can only be directly addressed in I2C mode. Use extended addressing when operating in SPI mode.

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 28

REGISTER ADDR BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FIFO DATA
RHR1 0x00 RData7 RData6 RData5 RData4 RData3 RData2 RData1 RData0
THR1 0x00 TData7 TData6 TData5 TData4 TData3 TData2 TData1 TData0
INTERRUPTS
IRQEn 0x01 CTSIEn RxEmtyIEn TFifoEmtyIEn TxTrgIEn RxTrgIEn STSIEn SpChrIEn LSRErrIEn
ISR1, 2 0x02 CTSInt RxEmptyInt TFifoEmptyInt TxTrgInt RxTrigInt STSInt SpCharInt LSRErrInt
LSRIntEn 0x03 — — NoiseIntEn RBreakIEn FrameErrIEn ParityIEn ROverrIEn RTimoutIEn
LSR1, 2 0x04 CTSbit — RxNoise RxBreak FrameErr RxParityErr RxOverrun RTimeout
SpclChrIntEn 0x05 — — MltDrpIntEn BREAKIntEn XOFF2IntEn XOFF1IntEn XON2IntEn XON1IntEn
SpclCharInt1 0x06 — — MultiDropInt BREAKInt XOFF2Int XOFF1Int XON2Int XON1Int
STSIntEn3 0x07 TxEmptyIntEn SleepIntEn ClkRdyIntEn — GPI3IntEn GPI2IntEn GPI1IntEn GPI0IntEn
STSInt1, 2, 3 0x08 TxEmptyInt SleepInt ClkReady — GPI3Int GPI2Int GPI1Int GPI0Int
UART MODES
MODE1 0x09 — AutoSleep ForcedSleep TrnscvCtrl RTSHiZ TxHiZ TxDisabl RxDisabl
MODE2 0x0A EchoSuprs MultiDrop Loopback SpecialChr RFifoEmptyInv RxTrgInv FIFORst RST
LCR2 0x0B RTSbit TxBreak ForceParity EvenParity ParityEn StopBits Length1 Length0
RxTimeOut 0x0C TimOut7 TimOut6 TimOut5 TimOut4 TimOut3 TimOut2 TimOut1 TimOut0
HDplxDelay 0x0D Setup3 Setup2 Setup1 Setup0 Hold3 Hold2 Hold1 Hold0
IrDA 0x0E — — TxInv RxInv MIR — SIR IrDAEn
FIFOs CONTROL
FlowLvl 0x0F Resume3 Resume2 Resume1 Resume0 Halt3 Halt2 Halt1 Halt0
FIFOTrgLvl2 0x10 RxTrig3 RxTrig2 RxTrig1 RxTrig0 TxTrig3 TxTrig2 TxTrig1 TxTrig0
TxFIFOLvl1 0x11 TxFL7 TxFL6 TxFL5 TxFL4 TxFL3 TxFL2 TxFL1 TxFL0
RxFIFOLvl1 0x12 RxFL7 RxFL6 RxFL5 RxFL4 RxFL3 RxFL2 RxFL1 RxFL0
FLOW CONTROL
FlowCtrl 0x13 SwFlow3 SwFlow2 SwFlow1 SwFlow0 SwFlowEn GPIAddr AutoCTS AutoRTS
XON1 0x14 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
XON2 0x15 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
XOFF1 0x16 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
XOFF2 0x17 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
GPIOs
GPIOConfg3 0x18 GP3OD GP2OD GP1OD GP0OD GP3Out GP2Out GP1Out GP0Out
GPIOData3 0x19 GPI3Dat GPI2Dat GPI1Dat GPI0Dat GPO3Dat GPO2Dat GPO1Dat GPO0Dat
CLOCK CONFIGURATION
PLLConfig2, 4 0x1A PLLFactor1 PLLFactor0 PreDiv5 PreDiv4 PreDiv3 PreDiv2 PreDiv1 PreDiv0
BRGConfig 0x1B — — 4xMode 2xMode FRACT3 FRACT2 FRACT1 FRACT0
DIVLSB2 0x1C Div7 Div6 Div5 Div4 Div3 Div2 Div1 Div0
DIVMSB 0x1D Div15 Div14 Div13 Div12 Div11 Div10 Div9 Div8
CLKSource2, 4 0x1E CLKtoRTS — — — PLLBypass PLLEn CystalEn —
GLOBAL REGISTERS
GlobalIRQ1, 2 0x1F 0 0 0 0 0 0 IRQ1 IRQ0
GloblComnd1 0x1F GlbCom7 GlbCom6 GlbCom5 GlbCom4 GlbCom3 GlbCom2 GlbCom1 GlbCom0
SYNCHRONIZATION
TxSynch5 0x20 CLKtoGPIO TxAutoDis TrigDelay SynchEn TrigSel3 TrigSel2 TrigSel1 TrigSel0
SynchDelay15 0x21 SDelay7 SDelay6 SDelay5 SDelay4 SDelay3 SDelay2 SDelay1 SDelay0
SynchDelay25 0x22 SDelay15 SDelay14 SDelay13 SDelay12 SDelay11 SDelay10 SDelay9 SDelay8
TIMER REGISTERS
TIMER15 0x23 Timer7 Timer6 Timer5 Timer4 Timer3 Timer2 Timer1 Timer0
TIMER25 0x24 TmrToGPIO Timer14 Timer13 Timer12 Timer11 Timer10 Timer9 Timer8
REVISION
RevID1, 2, 5 0x25 1 1 0 0 0 0 1 0

Detailed Register Descriptions
The MAX3109 has 8-bit-wide registers. When using SPI control, the extended register location (0x20 through 0x25) can
only be accessed by first enabling extended read/writing through GloblComnd. Each UART has an exclusive set of
registers. Select a UART to write to by setting the U bit of the command byte in SPI mode or the unique I2C address in
I2C mode (see the Serial Controller Interface section for more information).

Bits 7–0: RDatax
The RHR is the bottom of the receive FIFO and is the register used for reading data out of the receive FIFO. It contains
the oldest (first received) character in the receive FIFO. RHR[0] is the LSB of the character received at the RX_ input. It
is the first data bit of the serial-data word received by the receiver. Reading RHR removes the read word from the receive
FIFO, clearing space for more data to be received.
Note that the data read out of RHR can be in error. This occurs when the UART receiver is receiving a character at the
same time as a value is being read out of RHR and the FIFO level counter is being updated. In the event of this error
condition, the result is that a character will be read out twice from the RHR.
To avoid this, the receiver should no be receiving data while the RHR is being read out. This can be achieved via flow
control, or prior knowledge of the amount of data that is expected to be received.

Bits 7–0: TDatax
The THR is the register that the host controller writes data to for subsequent UART transmission. This data is depos-
ited in the transmit FIFO. THR[0] is the LSB. It is the first data bit of the serial-data word that the transmitter sends out,
immediately after the START bit.
Note that an error can occur in the TxFIFO when a character is written into THR at the same time as the transmitter is
transmitting out data via TX. In the event of this error condition, the result is that the character will not be transmitted.
To avoid this, stop the transmitter when writing data to the THR. This can be done via the TxDisable bit in the MODE1
register.

Receive Hold Register (RHR)

Transmit Hold Register (THR)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 29

ADDRESS: 0x00
MODE: R

BIT 7 6 5 4 3 2 1 0
NAME RData7 RData6 RData5 RData4 RData3 RData2 RData1 RData0
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x00
MODE: W

BIT 7 6 5 4 3 2 1 0
NAME TData7 TData6 TData5 TData4 TData3 TData2 TData1 TData0
RESET 0 0 0 0 0 0 0 0

The IRQEn register is used to enable the IRQ physical interrupt. Any of the eight ISR interrupt sources can be enabled
to generate an interrupt on IRQ. The IRQEn bits only influence the IRQ output and do not have any effect on the ISR
contents or behavior. Every one of the IRQEn bits operates on a corresponding ISR bit.
Bit 7: CTSIEn
The CTSIEn bit enables IRQ interrupt generation when the CTSInt interrupt is set in ISR[7]. Set CTSIEn low to disable
IRQ generation from CTSInt.
Bit 6: RxEmtyIEn
The RxEmtyIEn bit enables IRQ interrupt generation when the RxEmptyInt interrupt is set in ISR[6]. Set RxEmtyIEn low
to disable IRQ generation from RxEmptyInt.
Bit 5: TFifoEmtyIEn
The TFifoEmtyIEn bit enables IRQ interrupt generation when the TFifoEmptyInt interrupt is set in ISR[5]. Set TFifoEmtyIEn
low to disable IRQ generation from TFifoEmptyInt.
Bit 4: TxTrgIEn
The TxTrgIEn bit enables IRQ interrupt generation when the TxTrigInt interrupt is set in ISR[4]. Set TxTrgIEn low to dis-
able IRQ generation from TxTrigInt.
Bit 3: RxTrgIEn
The RxTrgIEn bit enables IRQ interrupt generation when the RxTrigInt interrupt is set in ISR[3]. Set RxTrgIEn low to dis-
able IRQ generation from RxTrigInt.
Bit 2: STSIEn
The STSIEn bit enables IRQ interrupt generation when the STSInt interrupt is set in ISR[2]. Set STSIEn low to disable
IRQ generation from STSInt.
Bit 1: SpChrIEn
The SpChrIEn bit enables IRQ interrupt generation when the SpCharInt interrupt is set in ISR[1]. Set SpChrIEn low to
disable IRQ generation from SpCharInt.
Bit 0: LSRErrIEn
The LSRErrIEn bit enables IRQ interrupt generation when the LSRErrInt interrupt is set in ISR[0]. Set LSRErrIEn low to
disable IRQ generation from LSRErrInt.

IRQ Enable Register (IRQEn)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 30

ADDRESS: 0x01
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME CTSIEn RxEmtyIEn TFifoEmtyIEn TxTrgIEn RxTrgIEn STSIEn SpChrIEn LSRErrIEn
RESET 0 0 0 0 0 0 0 0

The Interrupt Status register provides an overview of all interrupts generated by the MAX3109. Both the interrupt bits and
any pending interrupts on IRQ are cleared after reading ISR. When the MAX3109 is operated in polled mode, ISR can
be polled to establish the UART’s status. In interrupt-driven mode, IRQ interrupts are enabled by the appropriate IRQEn
bits. The ISR contents either give direct information on the cause for the interrupt or point to other registers that contain
more detailed information.
Bit 7: CTSInt
The CTSInt interrupt is generated when a logic state transition occurs at the CTS_ input. CTSInt is cleared after ISR is
read. The current logic state of the CTS_ input can be read out through the LSR[7]: CTSbit bit.
Bit 6: RxEmptyInt
The RxEmptyInt interrupt is generated when the receive FIFO is empty. RxEmptyInt is cleared after ISR is read. Its mean-
ing can be inverted by the MODE2[3]: RFifoEmptyInv bit.
Bit 5: TFifoEmptyInt
The TFifoEmptyInt interrupt is generated when the transmit FIFO is empty and the transmitter is transmitting the last
character. Use STSInt[7]: TxEmptyInt to determine when the last character has completed transmission. TFifoEmptyInt
is cleared after ISR is read.
Bit 4: TxTrigInt
The TxTrigInt interrupt is generated when the number of characters in the transmit FIFO is equal to or greater than the
transmit FIFO trigger level defined in FIFOTrgLvl[3:0]. TxTrigInt is cleared when the transmit FIFO level falls below the
trigger level or after ISR is read. TxTrigInt can be used as a warning that the transmit FIFO is nearing overflow.
Bit 3: RxTrigInt
The RxTrigInt interrupt is generated when the receive FIFO fill level reaches the receive FIFO trigger level defined in
FIFOTrgLvl[7:4]. RxTrigInt can be used as an indication that the receive FIFO is nearing overrun. It can also be used to
report that a known number of words are available that can be read out in one block. The meaning of RxTrigInt can be
inverted by the MODE2[2]: RxTrigInv bit. RxTrigInt is cleared after ISR is read.
Bit 2: STSInt
The STSInt interrupt is generated when any interrupt in the STSInt register that is enabled by a STSIntEn bit is high.
STSInt is cleared after ISR is read, but the interrupt in STSInt that caused this interrupt remains set. See the STSInt
register description for details about this interrupt.
Bit 1: SpCharInt
The SpCharInt interrupt is generated when a special character is received, a line break is detected, or an address char-
acter is received in multidrop mode. SpCharInt is cleared after ISR is read, but the interrupt in SpclCharInt that caused
this interrupt remains set. See the SpclCharInt register description for details about this interrupt.
Bit 0: LSRErrInt
The LSRErrInt interrupt is generated when any interrupts in LSR that are enabled by corresponding bits in LSRIntEn are
set. This bit is cleared after ISR is read. See the LSR register description for details about this interrupt.

Interrupt Status Register (ISR)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 31

ADDRESS: 0x02
MODE: COR

BIT 7 6 5 4 3 2 1 0
NAME CTSInt RxEmptyInt TFifoEmptyInt TxTrigInt RxTrigInt STSInt SpCharInt LSRErrInt
RESET 0 1 1 0 0 0 0 0

LSRIntEn allows routing of LSR interrupts to ISR[0]. The LSRIntEn bits only influence the ISR[0]: LSRErrInt bit and do
not have any effect on the LSR contents or behavior. Bits 5 to 0 of the LSRIntEn register operate on a corresponding
LSR bit, while bits 7 and 6 are not used.
Bits 7 and 6: No Function
Bit 5: NoiseIntEn
Set the NoiseIntEn bit high to enable routing the LSR[5]: RxNoise interrupt to ISR[0]. If NoiseIntEn is set low, RxNoise
is not routed to ISR[0].
Bit 4: RBreakIEn
Set the RBreakIEn bit high to enable routing the LSR[4]: RxBreak interrupt to ISR[0]. If RBreakIEn is set low, RxBreak
is not routed to ISR[0].
Bit 3: FrameErrIEn
Set the FrameErrIEn bit high to enable routing the LSR[3]: FrameErr interrupt to ISR[0]. If FrameErrIEn is set low,
FrameErr is not routed to ISR[0].
Bit 2: ParityIEn
Set the ParityIEn bit high to enable routing the LSR[2]: RxParityErr interrupt to ISR[0]. If ParityIEn is set low, RxParityErr
is not routed to ISR[0].
Bit 1: ROverrIEn
Set the ROverrIEn bit high to enable routing the LSR[1]: RxOverrun interrupt to ISR[0]. If ROverrIEn is set low, RxOverrun
is not routed to ISR[0].
Bit 0: RTimoutIEn
Set the RTimoutIEn bit high to enable routing the LSR[0]: RTimeout interrupt to ISR[0]. If RTimoutIEn is set low, RTimeout
is not routed to ISR[0].

Line Status Interrupt Enable Register (LSRIntEn)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 32

ADDRESS: 0x03
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME — — NoiseIntEn RBreakIEn FrameErrIEn ParityIEn ROverrIEn RTimoutIEn
RESET 0 0 0 0 0 0 0 0

LSR contains all error information related to the word most recently read out from the RxFIFO through RHR. The LSR
bits are not cleared after LSR is read; these bits stay set until the next character is read out of RHR, with the exception
of LSR[1], which is cleared by reading either RHR or LSR. LSR also contains the current logic state of the CTS input.
Bit 7: CTSbit
The CTSbit bit reflects the current logic state of the CTS_ input. This bit is cleared when the CTS_ input is low and set
when it is high. Following a power-up or reset, the logic state of CTSbit depends on the state of the CTS_ input.
Bit 6: No Function
Bit 5: RxNoise
If noise is detected on the RX_ input during reception of a character, the RxNoise interrupt is generated for that character.
LSR[5] corresponds to the character most recently read from RHR. RxNoise is cleared after the character following the
“noisy character” is read out from RHR. RxNoise generates an interrupt in ISR[0] if enabled by LSRIntEn[5].
Bit 4: RxBreak
If a line break (RX input low for a period longer than the programmed character duration) is detected, a break character
is put in the RxFIFO and the RxBreak interrupt is generated for this character. A break character is represented by an
all-zeros data character. The RxBreak interrupt distinguishes a regular character with all zeros from a break character.
LSR[4] corresponds to the current character most recently read from RHR. RxBreak is cleared after the character fol-
lowing the break character is read out from RHR. RxBreak generates an interrupt in ISR[0] if enabled by LSRIntEn[4].
Bit 3: FrameErr
The FrameErr interrupt is generated when the received data frame does not match the expected frame format in length.
A frame error is related to errors in expected STOP bits. LSR[3] corresponds to the frame error of the character most
recently read from RHR. FrameErr is cleared after the character following the affected character is read out from RHR.
FrameErr generates an interrupt in ISR[0] if enabled by LSRIntEn[3].
Bit 2: RxParityErr
The RxParityErr interrupt is generated when the parity computed on the character being received does not match the
received character’s parity bit. LSR[2] indicates a parity error for the character most recently read from RHR. RxParityErr
is cleared when the character following the affected character is read out from RHR.
In 9-bit multidrop mode (MODE2[6] is logic 1) the receiver does not check parity and the 9th bit (address/data) is stored
in LSR[2].
RxParityErr generates an interrupt in ISR[0] if enabled by LSRIntEn[2].
Bit 1: RxOverrun
The RxOverrun interrupt is generated when the receive FIFO is full and additional data is received that does not fit into
the receive FIFO. The receive FIFO retains the data that it already contains and discards all new data. RxOverrun is
cleared after LSR is read or the RxFIFO level falls below its maximum. RxOverrun generates an interrupt in ISR[0] if
enabled by LSRIntEn[1].
Bit 0: RTimeout
The RTimeout interrupt indicates that stale data is present in the receive FIFO. RTimeout is set when all of the characters
in the RxFIFO have been present for at least as long as the period programmed into the RxTimeOut register.

Line Status Register (LSR)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 33

ADDRESS: 0x04
MODE: R

BIT 7 6 5 4 3 2 1 0
NAME CTSbit — RxNoise RxBreak FrameErr RxParityErr RxOverrun RTimeout
RESET X 0 0 0 0 0 0 0

SpclChrIntEn allows routing of SpclCharInt interrupts to ISR[1]. The SpclChrIntEn bits only influence the ISR[1]:
SpCharInt bit and do not have any effect on the SpclCharInt contents or behavior.
Bits 7 and 6: No Function
Bit 5: MltDrpIntEn
Set the MltDrpIntEn bit high to enable routing the SpclCharInt[5]: MultiDropInt interrupt to ISR[1]. If MltDrpIntEn is set
low, MultiDropInt is not routed to ISR[1].
Bit 4: BREAKIntEn
Set the BREAKIntEn bit high to enable routing the SpclCharInt[4]: BREAKInt interrupt to ISR[1]. If BREAKIntEn is set
low, BREAKInt is not routed to ISR[1].
Bit 3: XOFF2IntEn
Set the XOFF2IntEn bit high to enable routing the SpclCharInt[3]: XOFF2Int interrupt to ISR[1]. If XOFF2IntEn is set
low, XOFF2Int is not routed to ISR[1].
Bit 2: XOFF1IntEn
Set the XOFF1IntEn bit high to enable routing the SpclCharInt[2]: XOFF1Int interrupt to ISR[1]. If XOFF1IntEn is set
low, XOFF1Int is not routed to ISR[1].
Bit 1: XON2IntEn
Set the XON2IntEn bit high to enable routing the SpclCharInt[1]: XON2Int interrupt to ISR[1]. If XON2IntEn is set low,
XON2Int is not routed to ISR[1].
Bit 0: XON1IntEn
Set the XON1IntEn bit high to enable routing the SpclCharInt[0]: XON1Int interrupt to ISR[1]. If XON1IntEn is set low,
XON1Int is not routed to ISR[1].

The timeout counter restarts whenever RHR is read or a new character is received by the RxFIFO. If the value in
RxTimeOut is zero, RTimeout is disabled. RTimeout is cleared after a word is read out of the RxFIFO or a new word is
received. RTimeout generates an interrupt in ISR[0] if enabled by LSRIntEn[0].

Special Character Interrupt Enable Register (SpclChrIntEn)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 34

ADDRESS: 0x05
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME — — MltDrpIntEn BREAKIntEn XOFF2IntEn XOFF1IntEn XON2IntEn XON1IntEn
RESET 0 0 0 0 0 0 0 0

SpclCharInt contains interrupts that are generated when a special character is received, an address is received in mul-
tidrop mode, or a line break occurs.
Bits 7 and 6: No Function
Bit 5: MultiDropInt
The MultiDropInt interrupt is generated when the MAX3109 receives an address character in 9-bit multidrop mode,
enabled in MODE2[6]. MultiDropInt is cleared after SpclCharInt is read. MultiDropInt generates an interrupt in ISR[1] if
enabled by SpclChrIntEn[5].
Bit 4: BREAKInt
The BREAKInt interrupt is generated when a line break (RX_ low for longer than one character length) is detected by
the receiver. BREAKInt is cleared after SpclCharInt is read. BREAKInt generates an interrupt in ISR[1] if enabled by
SpclChrIntEn[4].
Bit 3: XOFF2Int
The XOFF2Int interrupt is generated when both an XOFF2 special character is received and special character detection
is enabled by MODE2[4]. XOFF2Int is cleared after SpclCharInt is read. XOFF2Int generates an interrupt in ISR[1] if
enabled by SpclChrIntEn[3].
Bit 2: XOFF1Int
The XOFF1Int interrupt is generated when both an XOFF1 special character is received and special character detection
is enabled by MODE2[4]. XOFF1Int is cleared after SpclCharInt is read. XOFF1Int generates an interrupt in ISR[1] if
enabled by SpclChrIntEn[2].
Bit 1: XON2Int
The XON2Int interrupt is generated when both an XON2 special character is received and special character detection is
enabled by MODE2[4]. XON2Int is cleared after SpclCharInt is read. XON2Int generates an interrupt in ISR[1] if enabled
by SpclChrIntEn[1].
Bit 0: XON1Int
The XON1Int interrupt is generated when both an XON1 special character is received and special character detection is
enabled by MODE2[4]. XON1Int is cleared after SpclCharInt is read. XON1Int generates an interrupt in ISR[1] if enabled
by SpclChrIntEn[0].

Special Character Interrupt Register (SpclCharInt)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 35

ADDRESS: 0x06
MODE: COR

BIT 7 6 5 4 3 2 1 0
NAME — — MultiDropInt BREAKInt XOFF2Int XOFF1Int XON2Int XON1Int
RESET 0 0 0 0 0 0 0 0

STSIntEn allows routing of STSInt interrupts to ISR[2]. The STSIntEn bits only influence the ISR[2]: STSInt bit and do
not have any effect on the STSInt contents or behavior, with the exception of the GPIxIntEn interrupt enable bits, which
control the generation of the STSInt.
Bit 7: TxEmptyIntEn
Set the TxEmptyIntEn bit high to enable routing the STSInt[7]: TxEmptyInt interrupt to ISR[2]. If TxEmptyIntEn is set low,
TxEmptyInt is not routed to ISR[2].
Bit 6: SleepIntEn
Set the SleepIntEn bit high to enable routing the STSInt[6]: SleepInt interrupt to ISR[2]. If SleepIntEn is set low, SleepInt
is not routed to ISR[2].
Bit 5: ClkRdyIntEn
Set the ClkRdyIntEn bit high to enable routing the STSInt[6]: ClkReady interrupt to ISR[2]. If ClkRdyIntEn is set low,
ClkReady is not routed to ISR[2].
Bit 4: No Function
Bits 3–0: GPIxIntEn
Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7.
For example, for UART1: GP0OD configures GPIO4, GP1OD configures GPIO5, GP2OD configures GPIO6 and GP3OD
configures GPIO7.
Set the GPIxIntEn bits high to enable generating the STSInt[3:0]: GPIxInt interrupts. If any of the GPIxIntEn bits are set
low, the associated GPIxInt interrupts are not generated.

STS Interrupt Enable Register (STSIntEn)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 36

ADDRESS: 0x07
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME TxEmptyIntEn SleepIntEn ClkRdyIntEn — GPI3IntEn GPI2IntEn GPI1IntEn GPI0IntEn
RESET 0 0 0 0 0 0 0 0

Bit 7: TxEmptyInt
The TxEmptyInt interrupt is generated when both the TxFIFO is empty and the last character has completed transmis-
sion. TxEmptyInt is cleared after STSInt is read. TxEmptyInt generates an interrupt in ISR[2] if enabled by STSIntEn[7].
Bit 6: SleepInt
The SleepInt status bit is generated when the MAX3109 enters sleep mode. SleepInt is cleared when the UART exits
sleep mode. This status bit is also cleared when the UART clock is disabled and is not cleared by reading STSInt.
SleepInt generates an interrupt in ISR[2] if enabled by STSIntEn[6].
Bit 5: ClkReady
The ClkReady status bit is generated when the clock, the predivider, and the PLL have settled, signifying that the
MAX3109 is ready for data communication. The ClkReady bit only works with the crystal oscillator. It does not work with
external clocking through XIN.
ClkReady is cleared when the clock is disabled and is not cleared after STSInt is read. ClkReady generates an interrupt
in ISR[2] if enabled by STSIntEn[5].
Bit 4: No Function
Bits 3–0: GPIxInt
Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7.
For example, for UART1: GP0OD configures GPIO4, GP1OD configures GPIO5, GP2OD configures GPIO6 and GP3OD
configures GPIO7.
The GPIxInt interrupts are generated when a change of logic state occurs on the associated GPIO input. The GPIxInt
interrupts are cleared after STSInt is read. The GPIxInt interrupts generate an interrupt in ISR[2] if enabled by the cor-
responding bits in STSIntEn[3:0].

Status Interrupt Register (STSInt)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 37

ADDRESS: 0x08
MODE: R/COR

BIT 7 6 5 4 3 2 1 0
NAME TxEmptyInt SleepInt ClkReady — GPI3Int GPI2Int GPI1Int GPI0Int
RESET 0 0 0 0 0 0 0 0

Bit 6: AutoSleep
Set the AutoSleep bit high to set the MAX3109 to automatically enter low-power sleep mode after a period of no activity
(see the Auto-Sleep Mode section). An interrupt is generated in STSInt[6]: SleepInt when the MAX3109 enters sleep
mode.
Bit 5: ForcedSleep
Set the ForcedSleep bit high to force the MAX3109 into low-power sleep mode (see the Forced-Sleep Mode section).
The current sleep state can be read out through the ForcedSleep bit, even when the UART is in sleep mode.
Bit 4: TrnscvCtrl
Set the TrnscvCtrl bit high to enable auto transceiver direction control mode. RTS_ automatically controls the transceiv-
er’s transmit/receive enable/disable inputs in this mode. RTS_ is logic-low so that the transceiver is in receive mode with
the transmitter disabled until the TxFIFO contains data available for transmission, at which point RTS_ is automatically
set logic-high before the transmitter sends out the data. Once the transmitter is empty, RTS_ is automatically forced low
again.
Setup and hold times for RTS_ with respect to the TX_ output can be defined through the HDplxDelay register. A trans-
mitter empty interrupt is generated in ISR[5] when the TxFIFO is empty.
Bit 3: RTSHiZ
Set the RTSHiZ bit high to three-state RTS_.
Bit 2: TxHiZ
Set the TxHiZ bit high to three-state the TX_ output.
Bit 1: TxDisabl
Set the TxDisabl bit high to disable transmission. If the TxDisabl bit is set high during transmission, the transmitter com-
pletes sending out the current character and then ceases transmission. Data still present in the transmit FIFO remains
in the TxFIFO. The TX_ output is set to logic-high after transmission.
In auto transceiver direction control mode, TxDisabl is high when the transmitter is completely empty.
Bit 0: RxDisabl
Set the RxDisabl bit high to disable the receiver of the selected UART so that the receiver stops receiving data. All data
present in the receive FIFO remains in the RxFIFO.

MODE1 Register

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 38

ADDRESS: 0x09
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME — AutoSleep ForcedSleep TrnscvCtrl RTSHiZ TxHiZ TxDisabl RxDisabl
RESET 0 0 0 0 0 0 0 0

Bit 7: EchoSuprs
Set the EchoSuprs bit high to discard any data that the MAX3109 receives when its transmitter is busy transmitting. In
half-duplex communication such as RS-485 and IrDA, this allows blocking of the locally echoed data. The receiver can
block data for an extended time after the transmitter ceases transmission by programming a hold time in HDplxDelay[3:0].
Bit 6: MultiDrop
Set the MultiDrop bit high to enable the 9-bit multidrop mode. If this bit is set, parity checking is not performed by the
receiver and parity generation is not done by the transmitter. The address/data indication takes the place of the parity bit
in received and transmitted data words. The parity error interrupt in LSR[2] has a different meaning in multidrop mode: it
represents the 9th bit (address/data indication) that is received with each 9-bit data character.
Bit 5: Loopback
Set the Loopback bit high to enable internal local loopback mode. This internally connects TX_ to RX_ and also RTS_
to CTS_. In local loopback mode, the TX_ output and the RX_ input are disconnected from the internal transmitter and
receiver. The TX_ output is in three-state. The RTS_ output remains connected to the internal logic and reflects the logic
state programmed in LCR[7]. The CTS_ input is disconnected from RTS_ and the internal logic. CTS_ thus remains in
a high-impedance state.
Bit 4: SpecialChr
Set the SpecialChr bit high to enable special character detection. The receiver can detect up to four special characters,
as selected in FlowCtrl[5:4] and defined in the XON1, XON2, XOFF1, and/or XOFF2 registers, optionally in combina-
tion with GPIO_ inputs if enabled through FlowCtrl[2]: GPIAddr. When a special character is received, it is put into the
RxFIFO and a special character detect interrupt is generated in ISR[1].
Special character detection can be used in addition to auto XON/XOFF flow control if enabled by FlowCtrl[3]: SwFlowEn.
In this case, XON/XOFF flow control is limited to single byte XON and XOFF characters (XON1 and XOFF1), and only
two special characters can be defined (XON2 and XOFF2).
Bit 3: RFifoEmtyInv
Set the RFifoEmtyInv bit high to invert the meaning of the receiver empty interrupt in ISR[6]: RxEmptyInt. If RFifoEmtyInv
is set low, RxEmptyInt is generated when the receive FIFO is empty. If RFifoEmtyInv is set high, RxEmptyInt is generated
when data is put into the empty receive FIFO.
Bit 2: RxTrigInv
Set the RxTrigInv bit high to invert the meaning of the RxFIFO triggering. If the RxTrgInv bit is set low, an interrupt
is generated in ISR[3]: RxTrigInt when the RxFIFO fill level is filled up to above the trigger level programmed into
FIFOTrgLvl[7:4]. If RxTrigInv is set high, an interrupt is generated in ISR[3] when the RxFIFO is emptied to below the
trigger level programmed into FIFOTrgLvl[7:4].
Bit 1: FIFORst
Set the FIFORst bit high to clear all data contents from both the receive and transmit FIFOs. After a FIFO reset, set
FIFORst low to continue normal operation.
Bit 0: RST
Set the RST bit high to initiate software reset for the selected UART in the MAX3109. The I2C/SPI bus stays active dur-
ing this reset; communication with the MAX3109 is possible while RST is set. All register bits in the selected UART are
reset to their reset state and all FIFOs are cleared during a reset.
Set RST low to continue normal operation after a software reset. The MAX3109 requires reprogramming following a
software reset.

MODE2 Register

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 39

ADDRESS: 0x0A
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME EchoSuprs MultiDrop Loopback SpecialChr RFifoEmptyInv RxTrigInv FIFORst RST
RESET 0 0 0 0 0 0 0 0

Bit 7: RTSbit
The RTSbit bit provides direct control of the RTS_ output logic state. If RTSbit is logic 1, then RTS_ is logic 1; if it is logic
0, then RTS_ is logic 0. RTSbit only works when CLKSource[7]: CLKtoRTS is set low.
Bit 6: TxBreak
Set the TxBreak bit high to generate a line break whereby the TX_ output is held low. TX_ remains low until TxBreak is
set low.
Bit 5: ForceParity
The ForceParity bit enables forced parity that overrides normal parity generation. Set both the LCR[3]: ParityEn and
ForceParity bits high to use forced parity. In forced-parity mode, the parity bit is forced high by the transmitter if the
LCR[4]: EvenParity bit is low. The parity bit is forced low if EvenParity is high. Forced parity mode enables the transmitter
to control the address/data bit in 9-bit multidrop communication.
Bit 4: EvenParity
Set the EvenParity bit high to enable even parity for both the transmitter and receiver. If EvenParity is set low, odd parity
is used.
Bit 3: ParityEn
Set the ParityEn bit high to enable the use of a parity bit on the TX_ and RX_ interfaces. Set the ParityEn bit low to dis-
able parity usage.
If ParityEn is set low, then no parity bit is generated by the transmitter or expected by the receiver. If ParityEn is set high,
the transmitter generates the parity bit whose polarity is defined in LCR[4]: EvenParity, and the receiver checks the parity
bit according to the same polarity.
Bit 2: StopBits
The StopBits bit defines the number of stop bits and depends on the length of the word programmed in LCR[1:0] (Table
1). For example, when StopBits is set high and the word length is 5, the transmitter generates a word with a stop bit
length equal to 1.5 baud periods. Under these conditions, the receiver recognizes a stop bit length greater than a one-bit
duration.
Bits 1 and 0: Lengthx
The Lengthx bits configure the length of the words that the transmitter generates and the receiver checks for at the asyn-
chronous TX_ and RX_ interfaces (Table 2).

Line Control Register (LCR)

Table 1. StopBits Truth Table Table 2. Lengthx Truth Table

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 40

ADDRESS: 0x0B
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME RTSbit TxBreak ForceParity EvenParity ParityEn StopBits Length1 Length0
RESET 0 0 0 0 0 1 0 1

StopBits WORD LENGTH STOP BIT LENGTH
0 5, 6, 7, 8 1
1 5 1–1.5
1 6, 7, 8 2

Length1 Length0 WORD LENGTH
0 0 5
0 1 6
1 0 7
1 1 8

Bits 7–0: TimOutx
The RxTimeOut register allows programming a time delay from after the last (newest) character in the receive FIFO was
received until a receive data timeout interrupt is generated in LSR[0]. The units of TimOutx are measured in complete
character frames, which are dependent on the character length, parity, and STOP bit settings, and baud rate. If the value
in RxTimeOut equals zero, a timeout interrupt is not generated.

The HDplxDelay register allows programming setup and hold times between RTS_ transitions and TX_ output activity in
auto transceiver direction control mode, enabled by setting the MODE1[4]: TrnscvCtrl bit high. The hold time can also be
used to ensure echo suppression in half-duplex communication. HDplxDelay functions in 2x and 4x rate modes.
Bits 7–4: Setupx
The Setupx bits define a setup time for RTS_ to transition high before the transmitter starts transmission of its first char-
acter in auto transceiver direction control mode, enabled by setting the MODE1[4]: TrnscvCtrl bit high. This allows the
MAX3109 to account for skew times between the external transmitter’s enable delay and propagation delays. Setupx can
also be used to fix a stable state on the transmission line prior to the start of transmission.
The resolution of the HDplxDelay setup time delay is one bit interval, or one over the baud rate; this delay is baud-rate
dependent. The maximum delay is 15 bit intervals.
Bits 3–0: Holdx
The Holdx bits define a hold time for RTS_ to be held high after the transmitter ends transmission of its last character in
auto transceiver direction control mode, enabled by setting the MODE1[4]: TrnscvCtrl bit high. RTS_ transitions low after
the hold time delay, which starts after the last STOP bit was sent. This keeps the external transmitter enabled during the
hold time duration.
The Holdx bits also define a delay in echo suppression mode, enabled by setting the MODE2[7]: EchoSuprs bit high. See
the Echo Suppression section for more information.
The resolution of the HDplxDelay hold time delay is one bit interval, or one over the baud rate. Thus, this delay is baud
rate dependent. The maximum delay is 15 bit intervals.

Receiver Timeout Register (RxTimeOut)

HDplxDelay Register

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 41

ADDRESS: 0x0C
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME TimOut7 TimOut6 TimOut5 TimOut4 TimOut3 TimOut2 TimOut1 TimOut0
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x0D
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME Setup3 Setup2 Setup1 Setup0 Hold3 Hold2 Hold1 Hold0
RESET 0 0 0 0 0 0 0 0

The IrDA register allows selection of IrDA SIR- and MIR-compliant pulse shaping at the TX_ and RX_ interfaces. It also
allows inversion of the TX_ and RX_ logic, separate from whether IrDA pulse shaping is enabled or not.
Bits 7, 6, and 2: No Function
Bit 5: TxInv
Set the TxInv bit high to invert the logic at the TX_ output. This functionality is separate from IrDA operation.
Bit 4: RxInv
Set the RxInv bit high to invert the logic at the RX_ input. This functionality is separate from IrDA operation.
Bit 3: MIR
Set the MIR and IrDAEn bits high to select IrDA 1.1 (MIR) with 1/4th period pulse widths.
Bit 1: SIR
Set the SIR and IrDAEn bits high to select IrDA 1.0 pulses (SIR) with 3/16th period pulse widths.
Bit 0: IrDAEn
Set the IrDAEn bit high to program the MAX3109 to produce IrDA-compliant pulses at the TX_ output and expect
IrDAcompliant pulses at the RX_ input. If IrDAEn is set low, normal (non-IrDA) pulses are generated by the transmitter
and expected by the receiver. Use IrDAEn in conjunction with the SIR or MIR bits to select the pulse width.

FlowLvl is used for selecting the RxFIFO threshold levels used for auto software (XON/XOFF) and hardware (RTS_/
CTS_) flow control.
Bits 7–4: Resumex
The Resumex bits set the receive FIFO threshold at which an XON character is automatically sent in auto software flow
control mode or RTS_ is automatically asserted in AutoRTS mode. These flow control actions occur once the RxFIFO is
emptied to below the value in Resumex. This signals the far-end station to resume transmission. The threshold level is
calculated as 8 x Resumex. The resulting possible threshold-level range is 0 to 120 (decimal).
Bits 3–0: Haltx
The Haltx bits set the receive FIFO threshold level at which an XOFF character is automatically sent in auto software flow
control mode or RTS_ is automatically deasserted in AutoRTS mode. These flow control actions occur once the RxFIFO
is filled to above the value in Haltx. This signals the far-end station to halt transmission. The threshold level is calculated
as 8 x Haltx. The resulting possible threshold-level range is 0 to 120 (decimal).

IrDA Register

Flow Level Register (FlowLvl)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 42

ADDRESS: 0x0E
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME — — TxInv RxInv MIR — SIR IrDAEn
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x0F
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME Resume3 Resume2 Resume1 Resume0 Halt3 Halt2 Halt1 Halt0
RESET 0 0 0 0 0 0 0 0

Bits 7–4: RxTrigx
The RxTrigx bits allow definition of the receive FIFO threshold level at which the UART generates an interrupt in ISR[3].
This interrupt can be used to signal that either the receive FIFO is nearing overflow or a predefined number of FIFO loca-
tions are available for being read out in one block, depending on the state of the MODE2[2]: RxTrigInv bit.
The selectable threshold resolution is eight FIFO locations, so the actual FIFO trigger level is calculated as 8 x RxTrigx.
The resulting possible trigger-level range is 0 to 120 (decimal).
Bits 3–0: TxTrigx
The TxTrigx bits allow definition of the transmit FIFO threshold level at which the MAX3109 generates an interrupt in
ISR[4]. This interrupt can be used to manage data flow to the transmit FIFO. For example, if the trigger level is defined
near the bottom of the TxFIFO, the host knows that a predefined number of FIFO locations are available for being writ-
ten to in one block. Alternatively, if the trigger level is set near the top of the FIFO, the host is warned when the transmit
FIFO is nearing overflow. The selectable threshold resolution is eight FIFO locations, so the actual FIFO trigger level is
calculated as 8 x TxTrigx. The resulting possible trigger-level range is 0 to 120 (decimal).

Bits 7–0: TxFLx
The TxFIFOLvl register represents the current number of words in the transmit FIFO whenever the transmit UART is
idle. When the transmit UART actively sends out characters, the value in this register can sometimes be inaccurate if
this register is read at the same time that the transmit UART updates the transmit FIFO. First disable the transmitter to
get an accurate value. To manage the transmit FIFO even when the transmit UART is active, do not use this register to
determine transmit FIFO state. Rather, use the TFifoEmpty bit or the TFifoTrigInt bits.

Bits 7–0: RxFLx
The RxFIFOLvl register represents the current number of words in the receive FIFO whenever the receive UART is
idle. When the receive UART actively receives characters, the value in this register can sometimes be inaccurate if this
register is read at the same time that the receive UART updates the receive FIFO. To manage the receive FIFO even
when the receive UART is active, do not use this register to determine receive FIFO state. Use the RFIFOEmptyInt bit,
the RxTrgInt bit, and the RTimeOut bit instead.

FIFO Interrupt Trigger Level Register (FIFOTrgLvl)

Transmit FIFO Level Register (TxFIFOLvl)

Receive FIFO Level Register (RxFIFOLvl)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 43

ADDRESS: 0x10
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME RxTrig3 RxTrig2 RxTrig1 RxTrig0 TxTrig3 TxTrig2 TxTrig1 TxTrig0
RESET 1 1 1 1 1 1 1 1

ADDRESS: 0x11
MODE: R

BIT 7 6 5 4 3 2 1 0
NAME TxFL7 TxFL6 TxFL5 TxFL4 TxFL3 TxFL2 TxFL1 TxFL0
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x12
MODE: R

BIT 7 6 5 4 3 2 1 0
NAME RxFL7 RxFL6 RxFL5 RxFL4 RxFL3 RxFL2 RxFL1 RxFL0
RESET 0 0 0 0 0 0 0 0

The FlowCtrl register configures hardware (RTS/CTS) and software (XON/XOFF) flow control as well as special char-
acters detection.
Bits 7–4: SwFlowx
The SwFlowx bits select the XON and XOFF characters used for auto software flow control and/or special character detec-
tion in combination with the characters programmed in the XON1, XON2, XOFF2, and/or XOFF2 registers. See table 3.
If auto software flow control is enabled (through FlowCtrl[3]:SwFlowEn) and special character detection is not enabled,
SwFlowx allows selecting either single or dual XON/XOFF character flow control. When double character flow control is
enabled, the transmitter sends out XON1/XOFF1 first followed by XON2/XOFF2 during receive flow control. For transmit
flow control, the receiver only recognizes the received character sequence XON1/XOFF1 followed by XON2/XOFF2 as
a valid control sequence to resume/halt transmission.
If only special character detection is enabled (through MODE2[4]: SpecialChr) while auto software flow control is dis-
abled, the SwFlowx allows selecting either single or double character detection. Single character detection allows the
detection of two characters: XON1 or XON2 and XOFF1 or XOFF2. Double character detection does not distinguish
between the sequence of the two received XON1/XON2 or XOFF1/XOFF2 characters. The two characters have to be
received in succession, but it is insignificant which of the two is received first. The special characters are deposited in the
receive FIFO. An ISR[1]: SpCharInt interrupt is generated when special characters are received.
Auto software flow control and special character detection can be enabled to operate simultaneously. If both are
enabled, XON1 and XOFF1 define the auto flow control characters, while XON2 and XOFF2 constitute the special
character detection characters.
Bit 3: SwFlowEn
Set the SwFlowEn bit high to enable auto software flow control. The characters used for automatic software flow control
are selected by SwFlowx. If special character detection is enabled by setting the MODE2[4]: SpecialChr bit high in addi-
tion to automatic software flow control, XON1 and XOFF1 are used for flow control while XON2 and XOFF2 define the
special characters.
Bit 2: GPIAddr
Set the GPIAddr bit high to enable the four GPIO_ inputs to be used in conjunction with XOFF2 for the definition of a
special character. This can be used, for example, for defining the address of an RS-485 slave device through hardware.
The GPIO_ input logic levels define the four LSBs of the special character, while the four MSBs are defined by the
XOFF2[7:4] bits. The contents of the XOFF2[3:0] bits are neglected while the GPIO_ inputs are used in special character
definition. Reading the XOFF2 register does not reflect the logic on GPIO_ in this mode.
Bit 1: AutoCTS
Set the AutoCTS bit high to enable AutoCTS flow control mode. In this mode, the transmitter stops and starts sending
data at the TX_ interface depending on the logic state of the CTS_ input. See the Auto Hardware Flow Control section
for more information about AutoCTS flow control mode. Logic changes at the CTS_ input result in an interrupt in ISR[7]:
CTSInt. The transmitter must be turned off by setting the MODE1[1]: TxDisabl bit high before AutoCTS mode is enabled.
Bit 0: AutoRTS
Set the AutoRTS bit high to enable AutoRTS flow control mode. In this mode, the logic state of the RTS_ output is depen-
dent on the receive FIFO fill level. The FIFO thresholds at which RTS_ changes state are set in FlowLvl. See the Auto
Hardware Flow Control section for more information about AutoRTS flow control mode.

Flow Control Register (FlowCtrl)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 44

ADDRESS: 0x13
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME SwFlow3 SwFlow2 SwFlow1 SwFlow0 SwFlowEn GPIAddr AutoCTS AutoRTS
RESET 0 0 0 0 0 0 0 0

The XON1 and XON2 register contents define the XON character used for automatic XON/XOFF flow control and/or
the special characters used for special-character detection. See the FlowCtrl register description for more information.
Bits 7–0: Bitx
These bits define the XON1 character if single character XON auto software flow control is enabled in FlowCtrl[7:4].
If double-character flow control is selected in FlowCtrl[7:4], these bits constitute the least significant byte of the 2-byte
XON character. If special character detection is enabled in MODE2[4] and auto flow control is not enabled, these bits
define a special character.
If both special character detection and auto software flow control are enabled, XON1 defines the XON flow control character.

Table 3. SwFlow[3:0] Truth Table

X = Don’t care

XON1 Register

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 45

RECEIVE FLOW
CONTROL

TRANSMIT FLOW
CONTROL/SPECIAL

CHARACTER DETECTION DESCRIPTION

SwFlow3 SwFlow2 SwFlow1 SwFlow0
0 0 0 0 No flow control/no special character detection.
0 0 X X No receive flow control.
1 0 X X Transmitter generates XON1, XOFF1.
0 1 X X Transmitter generates XON2, XOFF2.
1 1 X X Transmitter generates XON1, XON2, XOFF1, and XOFF2.
X X 0 0 No transmit flow control.

X X 1 0
Receiver compares XON1 and XOFF1 and controls the transmitter
accordingly.
XON1 and XOFF1 special character detection.

X X 0 1
Receiver compares XON2 and XOFF2 and controls the transmitter
accordingly.
XON2 and XOFF2 special character detection.

X X 1 1
Receiver compares XON1, XON2, XOFF1, and XOFF2 and controls
the transmitter accordingly. XON1, XON2, XOFF1, and XOFF2 special
character detection.

ADDRESS: 0x14
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 0 0 0 0 0 0 0 0

The XON1 and XON2 register contents define the XON character for automatic XON/XOFF flow control and/or the special
characters used in special-character detection. See the FlowCtrl register description for more information.
Bits 7–0: Bitx
These bits define the XON2 character if single character auto software flow control is enabled in FlowCtrl[7:4]. If double-
character flow control is selected in FlowCtrl[7:4], these bits constitute the most significant byte of the 2-byte XON charac-
ter. If special character detection is enabled in MODE2[4] and auto software flow control is not enabled, these bits define
a special character.
If both special character detection and auto software flow control are enabled, XON2 defines a special character.

The XOFF1 and XOFF2 register contents define the XOFF character for automatic XON/XOFF flow control and/or the spe-
cial characters used in special character detection. See the FlowCtrl register description for more information.
Bits 7–0: Bitx
These bits define the XOFF1 character if single character XOFF auto software flow control is enabled in FlowCtrl[7:4]. If
double character flow control is selected in FlowCtrl[7:4], these bits constitute the least significant byte of the 2-byte XOFF
character. If special character detection is enabled in MODE2[4] and auto software flow control is not enabled, these bits
define a special character.
If both special character detection and auto software flow control are both enabled, XOFF1 defines the XOFF flow control
character.

XON2 Register

XOFF1 Register

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 46

ADDRESS: 0x15
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x16
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 0 0 0 0 0 0 0 0

The XOFF1 and XOFF2 register contents define the XOFF character for automatic XON/XOFF flow control and/or the spe-
cial characters used in special character detection. See the FlowCtrl register description for more information.
Bits 7–0: Bitx
These bits define the XOFF1 character if single character XOFF auto software flow control is enabled in FlowCtrl[7:4]. If
double character flow control is selected in FlowCtrl[7:4], these bits constitute the least significant byte of the 2-byte XOFF
character. If special character detection is enabled in MODE2[4] and auto software flow control is not enabled, these bits
define a special character.
If both special character detection and auto software flow control are both enabled, XOFF2 defines a special character.

Each UART has four GPIOs that can be configured as inputs or outputs and can be operated in push-pull or open-drain
mode. The reference clock needs to be active for the GPIOs to work.
Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7.
Bits 7–4: GPxOD
Set the GPxOD bits high to configure the associated GPIOs as open-drain outputs. Set the GPxOD bits low to configure the
associated GPIOs as push-pull outputs. For example, for UART1: GP0OD configures GPIO4, GP1OD configures GPIO5,
GP2OD configures GPIO6 and GP3OD configures GPIO7.
The GPIxDat bits reflect the input logic on the associated GPIO_s. For example, for UART1: GP0Dat configures GPIO4,
GP1Dat configures GPIO5, GP2Dat configures GPIO6 and GP3Dat configures GPIO7.
Bits 3–0: GPxOut
The GPxOut bits configure the associated GPIO_s to be either inputs or outputs. Set the GPxOut bits high to configure
the associated GPIO_s as outputs. Set the GPxOut bits low to configure the associated GPIO_s as inputs. For example,
for UART1: GP0Out configures GPIO4, GP1Out configures GPIO5, GP2Out configures GPIO6 and GP3Out configures
GPIO7.

XOFF2 Register

GPIO Configuration Register (GPIOConfg)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 47

ADDRESS: 0x17
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x18
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME GP3OD GP2OD GP1OD GP0OD GP3Out GP2Out GP1Out GP0Out
RESET 0 0 0 0 0 0 0 0

Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7.
Bits 7–4: GPIxDat
The GPIxDat bits reflect the input logic on the associated GPIO_s. For example, for UART1: GP0Dat configures GPIO4,
GP1Dat configures GPIO5, GP2Dat configures GPIO6 and GP3Dat configures GPIO7. When configured as inputs in
GPxOut, the GPIO_s are high-impedance inputs with weak pulldown resistors, regardless of the state of GPxOD.
Bits 3–0: GPOxDat
The GPOxDat bits allow programming of the logic state of the GPIO_s when configured as outputs in GPIOConfg[3:0].
For open-drain operation, pullup resistors are needed on the GPIOs. For example, for UART1: GP0Dat configures GPIO4,
GP1Dat configures GPIO5, GP2Dat configures GPIO6 and GP3Dat configures GPIO7.

GPIO Data Register (GPIOData)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 48

ADDRESS: 0x19
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME GPI3Dat GPI2Dat GPI1Dat GPI0Dat GPO3Dat GPO2Dat GPO1Dat GPO0Dat
RESET 0 0 0 0 0 0 0 0

Bits 7–6: PLLFactorx
The PLLFactorx bits allow programming the PLL multiplication factor. The input and output frequencies of the PLL must be
limited to the ranges shown in Table 4. Enable the PLL in CLKSource[2].
Bits 5–0: PreDivx
The PreDivx bits allow programming of the divisor in the PLL’s predivider. The divisor must be chosen such that the output
frequency of the predivider, which is the PLL’s input frequency, is limited to the ranges shown in Table 4. The PLL input
frequency is calculated as:

fPLLIN = fCLK/PreDiv
where fCLK is the input frequency of the crystal oscillator or external clock source (Figure 17), and PreDiv is an integer in
the range of 1 to 63.

PLL Configuration Register (PLLConfig)

Table 4. PLLFactorx Selection Guide

Figure 17. PLL Signal Path

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 49

ADDRESS: 0x1A
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME PLLFactor1 PLLFactor0 PreDiv5 PreDiv4 PreDiv3 PreDiv2 PreDiv1 PreDiv0
RESET 0 0 0 0 0 0 0 1

PLLFactor1 PLLFactor0 MULTIPLICATION
FACTOR

fPLLIN fREF
MIN (kHz) MAX MIN (MHz) MAX (MHz)

0 0 6 500 800kHz 3 4.8
0 1 48 850 1.2MHz 40.8 56
1 0 96 425 1MHz 40.8 96
1 1 144 390 667kHz 56 96

PREDIVIDER
fCLK PLL

fPLLIN fREF FRACTIONAL
BAUD-RATE
GENERATOR

Bits 7 and 6: No Function
Bit 5: 4xMode
Set the 4xMode bit high to quadruple the regular (16x sampling) baud rate. Set the 2xMode bit low when 4xMode is
enabled. See the 2x and 4x Rate Modes section for more information.
Bit 4: 2xMode
Set the 2xMode bit high to double the regular (16x sampling) baud rate. Set the 4xMode bit low when 2xMode is enabled.
See the 2x and 4x Rate Modes section for more information.
Bits 3–0: FRACTx
The FRACTx bits are the fractional portion of the baud-rate generator divisor. Set FRACTx to 0000b if not used. See the
Fractional Baud-Rate Generator section for calculations of how to set this value to select the baud rate.

DIVLSB and DIVMSB define the baud-rate generator integer divisor. The minimum value for DIVLSB is 1. See the
Fractional Baud-Rate Generator section for more information.
Bits 7–0: Divx
The Divx bits are the eight LSBs of the integer divisor portion (DIV) of the baud-rate generator.

Baud-Rate Generator Configuration Register (BRGConfig)

Baud-Rate Generator LSB Divisor Register (DIVLSB)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 50

ADDRESS: 0x1B
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME — — 4xMode 2xMode FRACT3 FRACT2 FRACT1 FRACT0
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x1C
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME Div7 Div6 Div5 Div4 Div3 Div2 Div1 Div0
RESET 0 0 0 0 0 0 0 1

DIVLSB and DIVMSB define the baud-rate generator integer divisor. The minimum value for DIVLSB is 1. See the
Fractional Baud-Rate Generator section for more information.
Bits 7–0: Divx
The Divx bits are the eight MSBs of the integer divisor portion (DIV) of the baud-rate generator.

Bit 7: CLKtoRTS
Set the CLKtoRTS bit high to route the baud-rate generator (16x baud rate) output clock to RTS_. The RTS_ clock fre-
quency is a factor of 16x, 8x, or 4x of the baud rate in 1x, 2x, and 4x rate modes, respectively.
Bits 6, 5, 4, and 0: No Function
Bit 3: PLLBypass
Set the PLLBypass bit high to bypass the internal PLL and predivider.
Bit 2: PLLEn
Set the PLLEn bit high to enable the internal PLL. Set PLLEn low to disable the internal PLL.
Bit 1: CrystalEn
Set the CrystalEn bit high to enable the crystal oscillator. When using an external clock source at XIN, set CrystalEn low.

Baud-Rate Generator MSB Divisor Register (DIVMSB)

Clock Source Register (CLKSource)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 51

ADDRESS: 0x1D
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME Div15 Div14 Div13 Div12 Div11 Div10 Div9 Div8
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x1E
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME CLKtoRTS — — — PLLBypass PLLEn CrystalEn —
RESET 0 0 0 1 1 0 0 0

Bit 7–2: No Function
Bits 1-0: IRQx
The MAX3109 has a single IRQ output. The GlobalIRQ register bits report which of the UARTs have an interrupt pending,
as enabled in the ISRIntEn registers.
The GlobalIRQ register can be read in two ways: either by reading register 0x1F of any of the two UARTs or by sampling
the two bits sent to the master on MISO during the command byte of a read cycle (full-duplex SPI) (see the Fast Read
Cycle section for more information).
The IRQx bits are set low when the associated UARTs have an IRQ interrupt pending. The IRQx bits are cleared high when
the associated UART interrupt is cleared. UART interrupts are cleared by reading the UART ISR register.

Global IRQ Register (GlobalIRQ)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 52

ADDRESS: 0x1F
MODE: R

BIT 7 6 5 4 3 2 1 0
NAME — — — — — — IRQ1 IRQ0
RESET 0 0 0 0 0 0 1 1

Bits 7–0: GlbComx
The GloblComnd register is the only global write register in the MAX3109. Every byte written to GloblComnd is sent
simultaneously to both UARTs. Every byte sent by the SPI/I2C master to register 0x1F is interpreted as a global command
by both internal UARTs, regardless of which UART it was written to.
The MAX3109 logic supports the following commands (Table 5):
● Global Tx Synchronization
● Extended Addressing Space Enable (to enable access to registers beyond address 0x1F)
● Extended Addressing Space Disable (to disable access to registers beyond address 0x1F)
The last two commands (0xCE/0xCD) enable or disable access to registers in the extended space of the register map when
the MAX3109 operates in SPI mode. The SPI command byte has only 5 bits to address a given register so that the registers
beyond 0x1F could not be addressed using the standard access method. In I2C mode, there is no need to explicitly enable
and disable the extended register map access as I2C allows up to 7 bits for register addressing. To extend the addressing
capability of the SPI command byte, send a 0xCE to location 0x1F. The internal SPI address in extended access mode is
generated as 0010 A3A2A1A0, where A3A2A1A0 is the least significant nibble of the command byte. Bit A4 of the com-
mand byte is disregarded when the extended space of the register map is enabled and only the least significant nibble is
used for addressing purposes (Table 6).
The U bit of the command byte maintains its meaning in the extended mode. See the SPI Interface section for more infor-
mation. To return to standard addressing mode, the SPI master sends the 0xCD command to register 0x1F. In this case,
the internal SPI address will be generated as follows (default): 000A4 A3A2A1A0.

Global Command Register (GloblComnd)

Table 5. GloblComnd Command
Descriptions

Table 6. Extended Mode Addressing
(SPI Only)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 53

ADDRESS: 0x1F
MODE: W

BIT 7 6 5 4 3 2 1 0
NAME GlbCom7 GlbCom6 GlbCom5 GlbCom4 GlbCom3 GlbCom2 GlbCom1 GlbCom0

GloblComndx COMMAND DESCRIPTION
0xE0 Tx Command 0
0xE1 Tx Command 1
0xE2 Tx Command 2
0xE3 Tx Command 3
0xE4 Tx Command 4
0xE5 Tx Command 5
0xE6 Tx Command 6
0xE7 Tx Command 7
0xE8 Tx Command 8
0xE9 Tx Command 9
0xEA Tx Command 10
0xEB Tx Command 11
0xEC Tx Command 12
0xED Tx Command 13
0xEE Tx Command 14
0xEF Tx Command 15
0xCE Enable extended register map access
0xCD Disable extended register map access

REGISTER SPI MODE
ADDRESS

I2C MODE
ADDRESS

TxSynch 0x00 0x20
SynchDelay1 0x01 0x21
SynchDelay2 0x02 0x22

TIMER1 0x03 0x23
TIMER2 0x04 0x24
RevID 0x05 0x25

The TxSynch register is used to configure transmitter synchronization with a global SPI or I2C command. One of 16 trig-
ger commands (Table 5) can be selected to be the synchronization trigger source individually for each UART. This allows
simultaneous start of transmission of multiple UARTs that are associated with the same global trigger command. The syn-
chronized UARTs can be on either a single MAX3109 or multiple devices if they are controlled by a common SPI interface.
The UARTs start transmission when a global trigger command is received. Start of transmission is considered to be the
falling edge of the START bit at the TX_ output. A delay can optionally be programmed through the SynchDelay1 and
SynchDelay2 registers.
TX synchronization is managed through software by transmitting the broadcast trigger Tx command (Table 5) to the
MAX3109 through the SPI or I2C interface. To selectively synchronize ports that are on the same MAX3109 (intrachip
synchronization) or on different MAX3109 (interchip synchronization) devices, up to 16 trigger Tx commands have been
defined (see the Global Command Register (GloblComnd) section for more information).
Bit 7: CLKtoGPIO
The CLKtoGPIO bit is used to provide a buffered replica of the UARTs system clock (i.e., the fractional baud-rate generator
input) to a GPIO. UART0’s clock is routed to GPIO0 and UART1’s clock is routed to GPIO4.
Bit 6: TxAutoDis
Set the TxAutoDis bit high to enable automatic transmitter disabling. When TxAutoDis is set high, the transmitter is auto-
matically disabled when all data in the TxFIFO has been transmitted. After the transmitter is disabled, the TxFIFO can then
be filled with data that will be transmitted when its assigned trigger command is received, as defined by the TrigSelx bits.
Bit 5: TrigDelay
Set the TrigDelay bit high to enable delayed start of transmission when a trigger command is received. The UART starts
transmitting data following a delay programmed in SynchDelay1 and SynchDelay2 after receiving the assigned trigger
command.
Bit 4: SynchEn
Set the SynchEn bit high to enable software TX synchronization mode. If SynchEn is set high, the UART starts transmit-
ting data when the assigned trigger command is received and the TxFIFO contains data. Setting SynchEn high forces the
MODE1[1]: TxDisabl bit high and thereby disables the UART’s transmitter. This prevents the transmitter from sending data
as soon as the TxFIFO is loaded. Once the TxFIFO has been loaded, the UART starts transmitting data only upon receiving
the assigned trigger command.
Set the SynchEn bit low to disable transmitter synchronization for that UART. If SynchEn is set low, that UART’s transmitter
does not start transmission through any trigger command.
Bits 3–0: TrigSelx
The TrigSelx bits assign the trigger command for that UART’s transmitter synchronization when SynchEn is set high. For
example, set TxSynch[3:0] to 0x08 for the UART to be triggered by TX command 8 (0xE8, Table 5).

Transmitter Synchronization Register (TxSynch)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 54

ADDRESS: 0x20
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME CLKtoGPIO TxAutoDis TrigDelay SynchEn TrigSel3 TrigSel2 TrigSel1 TrigSel0
RESET 0 0 0 0 0 0 0 0

The SynchDelay1 and SynchDelay2 register contents define the time delay between when the UART receives an
assigned transmitter trigger command and when the UART begins transmission.
Bits 7–0: SDelayx
The SDelayx bits are the 8 LSBs of the delay between when the UART receives an assigned transmitter trigger command
and when the UART begins transmission. The delay is expressed in number of UART bit intervals (1/BaudRate). The maxi-
mum delay is 65,535 bit intervals.
For example, given a baud rate of 230.4kbps, the bit time is 4.34Fs, so the maximum delay is 284ms.

The SynchDelay1 and SynchDelay2 register contents define the time delay between when the UART receives an
assigned transmitter trigger command and when the UART begins transmission.
Bits 7–0: SDelayx
The SDelayx bits are the 8 MSBs of the delay between when the UART receives an assigned transmitter trigger command
and when the UART begins transmission. The delay is expressed in number of UART bit intervals (1/BaudRate). The maxi-
mum delay is 65,535 bit intervals.
For example, given a baud rate of 230.4kbps, the bit time is 4.34Fs, so the maximum delay is 284ms.

Synchronization Delay Register 1 (SynchDelay1)

Synchronization Delay Register 2 (SynchDelay2)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 55

ADDRESS: 0x21
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME SDelay7 SDelay6 SDelay5 SDelay4 SDelay3 SDelay2 SDelay1 SDelay0
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x22
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME SDelay15 SDelay14 SDelay13 SDelay12 SDelay11 SDelay10 SDelay9 SDelay8
RESET 0 0 0 0 0 0 0 0

The TIMER1 and TIMER2 register contents can be used to generate a low-frequency clock signal on a GPIO_ output. The
low-frequency clock is a divided replica of the fractional baud-rate generator output. If TIMER1 and TIMER2 are both 0x00,
the low-frequency clock is off.
Bits 7–0: Timerx
The TIMER1[7:0] bits are the 8 LSBs of the 15-bit timer divisor. See the TIMER2 register description.

The TIMER1 and TIMER2 register contents can be used to generate a low-frequency clock signal on a GPIO_ output. The
low-frequency clock is a divided replica of the fractional baud-rate generator output. If TIMER1 and TIMER2 are both 0x00,
the low-frequency clock is off.
Bit 7: TmrToGPIO
Set the TmrToGPIO bit high to enable clock generation at a GPIO output. The clock signal is routed to GPIO1 for UART0
and GPIO5 for UART1. The output clock has a 50% duty cycle.
Bits 6–0: Timerx
The TIMER2[6:0] bits are the 7 MSBs of the 15-bit timer divisor. The clock frequency is calculated using the following for-
mula:

fTIMER_CLK = UARTClk/(1024 x Timerx)
where UARTClk is the fractional baud-rate generator output (i.e., 16 x Baud Rate).

Bits 7–0: Bitx
The RevID register indicates the revision number of the MAX3109 silicon starting with 0xC0. This can be used during soft-
ware development as a known reference.

Timer Register 1 (TIMER1)

Timer Register 2 (TIMER2)

Revision Identification Register (RevID)

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 56

ADDRESS: 0x23
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME Timer7 Timer6 Timer5 Timer4 Timer3 Timer2 Timer1 Timer0
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x24
MODE: R/W

BIT 7 6 5 4 3 2 1 0
NAME TmrToGPIO Timer14 Timer13 Timer12 Timer11 Timer10 Timer9 Timer8
RESET 0 0 0 0 0 0 0 0

ADDRESS: 0x25
MODE: R

BIT 7 6 5 4 3 2 1 0
NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RESET 1 1 0 0 0 0 1 0

Serial Controller Interface
The MAX3109 can be controlled through I2C or SPI as
defined by the logic on SPI/I2C. See the Pin Description
for further details.

SPI Interface
The SPI supports both single-cycle and burst read/write
access. The SPI master must generate clock and data sig-
nals in SPI MODE0 (i.e., with clock polarity CPOL = 0 and
clock phase CPHA = 0).
Each of the two UARTs is addressed using 1 bit (U) in the
command byte (Table 7).

To access the registers with addresses 0x20 or higher in
SPI mode, enable extended register map access. See the
GloblComnd register description for more information.

SPI Single-Cycle Access
Before a specific UART has been addressed, both UARTs
could attempt to drive MISO. To avoid this contention, the
MISO line is held in high impedance during a write cycle
(Figure 18).
During a read cycle, MISO is high impedance for the first
four clock cycles of the command byte. Once the SPI
address has been properly decoded, the addressed SPI
drives the MISO line (Figure 19).

Table 7. SPI Command Byte Configuration

Ax = Register address.

Figure 18. SPI Write Cycle

Figure 19. SPI Ready Cycle

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 57

SPI COMMAND BYTE
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
W/R 0 U A4 A3 A2 A1 A0

HIGH-Z

Ax = REGISTER ADDRESS
Dx = 8-BIT REGISTER CONTENTS

CS

SCLK

MOSI

MISO

W 0 U A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

HIGH-Z

Ax = REGISTER ADDRESS
Dx = 8-BIT REGISTER CONTENTS

SCLK

MOSI

MISO

R 0 U A4 A3 A2 A1 A0

CS

0 0 IRQ1 IRQ0 D7 D6 D5 D4 D3 D2 D1 D0

SPI Burst Access
Burst access allows writing and reading multiple data bytes
in one block by defining only the initial register address in
the SPI command byte. Multiple characters can be loaded
into the TxFIFO by using the THR (0x00) as the initial
burst write address. Similarly, multiple characters can be
read out of the RxFIFO by using the RHR (0x00) as the
SPI’s burst read address. If the SPI burst address is dif-
ferent from 0x00, the MAX3109 automatically increments
the register address after each SPI data byte. Efficient
programming of multiple consecutive registers is thus
possible. The chip-select input, CS/A0, must be held low
during the whole cycle. The SCLK/SCL clock continues
clocking throughout the burst access cycle. The burst cycle
ends when the SPI master pulls CS/A0 high.
For example, writing 128 bytes into the TxFIFO can be
achieved by a burst write access using the following
sequence:
1) Pull CS/A0 low.
2) Send SPI write command to address 0x00.
3) Send 128 bytes.
4) Release CS/A0.
This takes a total of (1 + 128) x 8 clock cycles.

Fast Read Cycle
The two UART interrupts on the MAX3109 share the single
IRQ output. When operating in interrupt-based mode, the
microcontroller needs to locate the source of the interrupt
(i.e., which of the UARTs generated the interrupt) and clear
the interrupt.
In order to locate the source of an interrupt more quickly,
the MAX3109 implements the SPI fast read cycle. This
means that the microcontroller can determine which UART
is the source of the interrupt (UART0 or UART1) using only
8 clock cycles (Figure 20). The U bit is ignored during the
fast read cycle.

I2C Interface
The MAX3109 contains an I2C-compatible interface for
data communication with a host processor (SCL and SDA).
The interface supports a clock frequency of up to 1MHz.
SCL and SDA require pullup resistors that are connected
to a positive supply.

START, STOP, and Repeated START Conditions
When writing to the MAX3109 using I2C, the master sends
a START condition (S) followed by the MAX3109 I2C
address. After the address, the master sends the register
address of the register that is to be programmed. The mas-
ter then ends communication by issuing a STOP condition
(P) to relinquish control of the bus, or a repeated START

Figure 20. SPI Fast Read Cycle

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 58

MOSI

Ax = REGISTER ADDRESS

SCLK

CS

MISO

0

HIGH-Z

R U A4 A3 A2 A1 A0

0 0 IRQ1 IRQ0

condition (Sr) to communicate to another I2C slave. See
Figure 21.

Slave Address
The MAX3109 includes a configurable 7-bit I2C slave
address, allowing up to 16 MAX3109 devices to share the
same I2C bus. The address is defined by connecting the
MOSI/A1 and CS/A0 inputs to DGND, VL, SCL, or SDA
(Table 5). Set the R/W bit high to configure the MAX3109 to
read mode. Set the R/W bit low to configure the MAX3109

to write mode. The address is the first byte of information
sent to the MAX3109 after the START condition.

Bit Transfer
One data bit is transferred on the rising edge of each SCL
clock cycle. The data on SDA must remain stable during
the high period of the SCL clock pulse. Changes in SDA
while SCL is high and stable are considered control signals
(see the START, STOP, and Repeated START Conditions
section). Both SDA and SCL remain high when the bus is
not active.

Table 8. I2C Address Map

Figure 21. I2C START, STOP, and Repeated START Conditions

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 59

MOSI/A1 CS/A0
UART0 UART1

WRITE READ WRITE READ
DGND DGND 0xD8 0xD9 0xB8 0xB9
DGND VL 0xC2 0xC3 0xA2 0xA3
DGND SCL 0xC4 0xC5 0xA4 0xA5
DGND SDA 0xC6 0xC7 0xA6 0xA7

VL DGND 0xC8 0xC9 0xA8 0xA9
VL VL 0xCA 0xCB 0xAA 0xAB
VL SCL 0xCC 0xCD 0xAC 0xAD
VL SDA 0xCE 0xCF 0xAE 0xAF

SCL DGND 0xD0 0xD1 0xB0 0xB1
SCL VL 0xD2 0xD3 0xB2 0xB3
SCL SCL 0xD4 0xD5 0xB4 0xB5
SCL SDA 0xD6 0xD7 0xB6 0xB7
SDA DGND 0xC0 0xC1 0xA0 0xA1
SDA VL 0xDA 0xDB 0xBA 0xBB
SDA SCL 0xDC 0xDD 0xBC 0xBD
SDA SDA 0xDE 0xDF 0xBE 0xBF

SCL

SDA

S Sr P

Single-Byte Write
In this operation, the master sends an address and two
data bytes to the slave device (Figure 22). The following
procedure describes the single-byte write operation:
1) The master sends a START condition.
2) The master sends the 7-bit slave address plus a write

bit (low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address.
5) The slave asserts an ACK on the data line only if the

address is valid (NACK if not).
6) The master sends 8 data bits.
7) The slave asserts an ACK on the data line.
8) The master generates a STOP condition.

Burst Write
In this operation, the master sends an address and mul-
tiple data bytes to the slave device (Figure 23). The slave
device automatically increments the register address after
each data byte is sent, unless the register being accessed
is 0x00, in which case the register address remains the
same. The following procedure describes the burst write
operation:
1) The master sends a START condition.
2) The master sends the 7-bit slave address plus a write

bit (low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends the 8-bit register address.
5) The slave asserts an ACK on the data line only if the

address is valid (NACK if not).
6) The master sends 8 data bits.
7) The slave asserts an ACK on the data line.
8) Repeat 6 and 7 N-1 times.
9) The master generates a STOP condition.

Figure 22. Write Byte Sequence

Figure 23. Burst Write Sequence

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 60

S

P

DEVICE SLAVE ADDRESS - W A

8 DATA BITS

FROM MASTER TO STAVE

WRITE SINGLE BYTE

FROM SLAVE TO MASTER

A

REGISTER ADDRESS A

S DEVICE SLAVE ADDRESS - W A

8 DATA BITS - 1

BURST WRITE

A

REGISTER ADDRESS A

8 DATA BITS - N A

8 DATA BITS - 2 A

FROM MASTER TO STAVE FROM SLAVE TO MASTER

P

Single-Byte Read
In this operation, the master sends an address plus two
data bytes and receives one data byte from the slave
device (Figure 24). The following procedure describes the
single-byte read operation:
1) The master sends a START condition.
2) The master sends the 7-bit slave address plus a

write bit (low).
3) The addressed slave asserts an ACK on the data

line.
4) The master sends the 8-bit register address.
5) The active slave asserts an ACK on the data line only

if the address is valid (NACK if not).
6) The master sends a repeated START condition.
7) The master sends the 7-bit slave address plus a read

bit (high).
8) The addressed slave asserts an ACK on the data line.
9) The slave sends 8 data bits.

10) The master asserts a NACK on the data line.
11) The master generates a STOP condition.

Burst Read
In this operation, the master sends an address plus two
data bytes and receives multiple data bytes from the slave
device (Figure 25). The following procedure describes the
burst byte read operation:
1) The master sends a START condition.
2) The master sends the 7-bit slave address plus a

write bit (low).
3) The addressed slave asserts an ACK on the data

line.
4) The master sends the 8-bit register address.
5) The slave asserts an ACK on the data line only if the

address is valid (NACK if not).
6) The master sends a repeated START condition.
7) The master sends the 7-bit slave address plus a read

bit (high).

Figure 24. Read Byte Sequence

Figure 25. Burst Read Sequence

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 61

S

Sr

DEVICE SLAVE ADDRESS - W A

DEVICE SLAVE ADDRESS - R

READ SINGLE BYTE

A

REGISTER ADDRESS A

8 DATA BITS NA

FROM MASTER TO STAVE FROM SLAVE TO MASTER

P

S

Sr

DEVICE SLAVE ADDRESS - W A

DEVICE SLAVE ADDRESS - R

BURST READ

A

REGISTER ADDRESS A

8 DATA BITS - 1 A

A 8 DATA BITS - 38 DATA BITS - 2 A

8 DATA BITS - N NA

FROM MASTER TO STAVE FROM SLAVE TO MASTER

P

8) The slave asserts an ACK on the data line.
9) The slave sends 8 data bits.
10) The master asserts an ACK on the data line.
11) Repeat 9 and 10 N-2 times.
12) The slave sends the last 8 data bits.
13) The master asserts a NACK on the data line.
14) The master generates a STOP condition.

Acknowledge Bits
Data transfers are acknowledged with an acknowledge
bit (ACK) or a not-acknowledge bit (NACK). Both the
master and the MAX3109 generate ACK bits. To generate
an ACK, pull SDA low before the rising edge of the ninth
clock pulse and hold it low during the high period of the
ninth clock pulse (Figure 26). To generate a NACK, leave
SDA high before the rising edge of the ninth clock pulse
and leave it high for the duration of the ninth clock pulse.
Monitoring for NACK bits allows for detection of unsuc-
cessful data transfers.

Applications Information
Startup and Initialization
The MAX3109 can be initialized following power-up, a
hardware reset, or a software reset as shown in Figure
27. To verify that the MAX3109 is ready for operation after
a power-up or reset.
Repeatedly read a known register until the expected con-
tents are returned. The MAX3109 is ready for operation
after approximately 200µs.

Figure 27. Startup and Initialization Flowchart

Figure 26. Acknowledge

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 62

POWER-UP/
RST INPUT PULLED HIGH

IS
DIVLSB READ

SUCCESSFULLY?

Y

N

CONFIGURE
CLOCKING

CONFIGURE
MODES

CONFIGURE
FIFO CONTROL

CONFIGURE
FLOW CONTROL

CONFIGURE
GPIOs

START
COMMUNICATION

ENABLE
INTERRUPTS

NOT-ACKNOWLEDGE

ACKNOWLEDGE

1 2 8 9

SDA

SCL

S

Low-Power Operation
To reduce the power consumption during normal opera-
tion, the following techniques can be adopted:
● Do not use the internal PLL. This saves the most

power of the options listed here. Disable and bypass
the PLL. With the PLL enabled, the current to the VCC
supply is in the range of a few mA (depending on clock
frequency and multiplication factor), while it drops to
below 1mA if disabled.

● Use an external clock source. The lowest power clock-
ing mode is when an external clock signal is used. This
drops the power consumption to about half that of an
external crystal.

● Keep the internal clock rates as low as possible.
● Use a low voltage on the VCC supply.
● Use an external 1.8V supply. This saves the power

dissipated by the internal 1.8V linear regulator for the
1.8V core supply. Connect an external 1.8V supply to
V18 and disable the internal regulator by connecting
LDOEN to DGND.

Interrupts and Polling
Monitor the MAX3109 by polling the ISR register or by
monitoring the IRQ output. In polled mode, the IRQ physi-
cal interrupt output is not used and the host controller
polls the ISR register at frequent intervals to establish the
state of the MAX3109.
Alternatively, the physical IRQ interrupt can be used to
interrupt the host controller after specified events, mak-
ing polling unnecessary. The IRQ output is an open-drain
output that requires a pullup resistor to VL.

Logic-Level Translation
The MAX3109 can be directly connected to transceivers
and controllers that have different supply voltages. The VL
input defines the logic voltage levels of the controller inter-
face, while the VEXT voltage defines the logic of the trans-
ceiver interface. This ensures flexibility when selecting a
controller and transceiver. Figure 28 shows an example of
a configuration where the controller, transceiver, and the
MAX3109 are powered by three different supplies.

Figure 28. Logic-Level Translation

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 63

MAX3109

TX_

RX_

RTS_

AGND DGND

VL VCC VEXT

RST

IRQ

SPI/I2C
MAX14840E
TRANSCEIVER

VCC

DI

DE

RO

VDD

2.5V
1.8V 3.3V

MICROCONTROLLER

Power-Supply Sequencing
The device’s power supplies can be turned on in any
order. Each supply can be present over the entire speci-
fied range regardless of the presence or level of the oth-
ers. Ensure the presence of the interface supplies VL and
VEXT before sending input signals to the controller and
transceiver interfaces.

Connector Sharing
The TX_ and RTS_ outputs can be programmed to be
high impedance. This feature is used in cases where the
MAX3109 shares a common connector with other com-
munications devices. Set the output of the MAX3109 to
high impedance when the other communication devices
are active. Set the MODE1[2]: TxHiZ bit high to set TX_
to a high-impedance state. Set the MODE1[3]: RTSHiZ
bit high to set RTS_ to a high-impedance state. Figure
29 shows an example of connector sharing with a USB
transceiver.

RS-232 5x3 Application
The four GPIOs can be used to implement the other flow
control signals defined in ITU V.24. Figure 30 shows how
the GPIOs create the DSR, DTR, DCD, and RI signals
found on some RS-232/V.28 interfaces.
Set the FlowCtrl[1:0] bits high to enable automatic hard-
ware RTS_/CTS_ flow control.

Figure 30. RS-232 Application

Figure 29. Connector Sharing with a USB Transceiver

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 64

MAX3109

TX0

RX0

Tx

Rx

SPI/I2C

MAX3245

T1IN

R1OUT

MICROCONTROLLER

RST

LDOEN

IRQ

RTS0

CTS0

RTS

CTS

T2IN

R2OUT

GPIO0

GPIO1

DTR

DSR

T3IN

R3OUT

GPIO2

GPIO3

DCD

RI

R4OUT

R5OUT

MAX3109

TX_

RX_

MAX13481E

D+

D-
OE

TX/D+

RX/D-

SHARED
CONNECTOR

Typical Application Circuit
Figure 31 shows the MAX3109 being used in a half-duplex
RS-485 application. The microcontroller, the RS-485
transceiver, and the MAX3109 are powered by a single
3.3V supply. SPI is used as the controller’s communica-
tion interface. The microcontroller provides an external
clock source to clock the UART.
The MAX14840 receiver is always enabled, so echoing
occurs. Enable auto echo suppression in the MAX3109
by setting the MODE2[7]: EchoSuprs bit high.
Set the MODE1[4]: TranscvCtrl bit high to enable auto
transceiver direction control in order to automatically con-
trol the DE input of the transceiver.

Figure 31. RS-485 Half-Duplex Application

MAX3109 Dual Serial UART with 128-Word FIFOs

www.maximintegrated.com Maxim Integrated │ 65

Package Information
For the latest package outline information and land patterns
(footprints), go to www.maximintegrated.com/packages. Note
that a “+”, “#”, or “-” in the package code indicates RoHS status
only. Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.

Chip Information
PROCESS: BiCMOS

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

Ordering Information

MAX14840E

A1

B1

DI

RO

RE

DE

MAX3109

TX0

RX0

AGND DGNDV18

VCC VEXT VL

IRQ

SPI/I2C

LDOEN

XOUT
RST

XIN

SPI

3.3V

MICROCONTROLLER

RTS0

MAX14840E

A2

B2

DI

RO

RE

DE
TX1

RX1

RTS1

10kΩ

1µF

0.1µF

PACKAGE
TYPE

PACKAGE
CODE

OUTLINE
NO.

LAND
PATTERN NO.

32 TQFN-EP T3255+4 21-0140 90-0012

PART TEMP RANGE PIN-PACKAGE
MAX3109ETJ+ -40ºC to +85ºC 32 TQFN-EP*

http://www.maximintegrated.com/packages
http://pdfserv.maximintegrated.com/package_dwgs/21-0140.PDF
http://pdfserv.maximintegrated.com/land_patterns/90-0012.PDF

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

MAX3109 Dual Serial UART with 128-Word FIFOs

© 2016 Maxim Integrated Products, Inc. │ 66

Revision History
REVISION
NUMBER

REVISION
DATE DESCRIPTION PAGES

CHANGED
0 3/11 Initial release —

1 5/12 Corrected for improved shutdown current mode and specifications, including low-
power shutdown mode configurations

1, 7, 14, 15, 27,
38, 62

2 10/12 Updated DC Electrical Characteristics, updated Pin Description, updated Register
Map, updated recommended capacitor value, updated IRQ text, updated Figure 31

9, 16, 28, 52,
56, 65

3 2/15

Added to the Receive and Transmit FIFOs section a note about how the TxFIFOLvl
and RxFIFOLvl values can be in error, added a note to the Transmitter Operation and
Receiver Operation sections about how errors can occur; updated the RHR, THR,
TxFIFOLvl, and RxFIFOLvl register bit descriptions.

16, 17, 29, 43

4 5/15 Removed automotive reference in the Applications section, revised the Benefits and
Features section, and updated the outline number in the Package Information table 1, 65

5 8/16 Updated package code. 65

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.

Океан Электроники
Поставка электронных компонентов

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при

поставках импортных электронных компонентов на взаимовыгодных условиях!

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным
представителем в России одного из крупнейших производителей разъемов военного и
аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и
эксклюзивным представителем в России производителя высокотехнологичных и надежных
решений для передачи СВЧ сигналов «FORSTAR».

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки,
Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более
30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит
испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества
(Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer,
Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,
General Dynamics и др.);

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического
назначения:
(Применяются в военной, авиационной, аэрокосмической,
морской, железнодорожной, горно- и нефтедобывающей
отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели,
кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и
специального назначения, в средствах связи, РЛС, а так же
военной, авиационной и аэрокосмической отраслях
промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)
Факс: 8 (812) 320-03-32
Электронная почта: ocean@oceanchips.ru
Web: http://oceanchips.ru/
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А

